Irreducibility and Additivity of Set Agreement-oriented Failure Detector Classes
Achour Mostefaoui, Sergio Rajsbaum, Michel Raynal, Corentin Travers

To cite this version:

HAL Id: inria-00000604
https://hal.inria.fr/inria-00000604
Submitted on 7 Nov 2005

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
IRREDUCIBILITY AND ADDITIVITY OF SET AGREEMENT-ORIENTED FAILURE DETECTOR CLASSES

A. MOSTEFAUI S. RAJSBAUM M. RAYNAL C. TRAVERS
Irreducibility and Additivity of Set Agreement-oriented Failure Detector Classes

A. Mostefau*, S. Rajsbaum**, M. Raynal***, C. Travers****

Systèmes communicants

Publication interne n° 1758 — Novembre 2005 — 24 pages

Abstract: Solving agreement problems (such as consensus and k-set agreement) in asynchronous distributed systems prone to process failures has been shown to be impossible. To circumvent this impossibility, distributed oracles (also called unreliable failure detectors) have been introduced. A failure detector provides information on failures, and a failure detector class is defined by a set of abstract properties that encapsulate (and hide) synchrony assumptions. Some failure detector classes have been shown to be the weakest to solve some agreement problems (e.g., Ω is the weakest class of failure detectors that allow solving the consensus problem in asynchronous systems where a majority of processes do not crash).

This paper considers several failure detector classes and focuses on their additivity or their irreducibility. It mainly investigates two families of failure detector classes (denoted $\Diamond S_x$ and $\Diamond \phi^y$, $0 \leq x, y \leq n$), shows that they can be “added” to provide a failure detector of the class Ω^2 (a generalization of Ω). It also characterizes the power of such an “addition”, namely, $\Diamond S_x + \Diamond \phi^y \leadsto \Omega^2 \iff x + y + z > t + 1$, where t is the maximum number of processes that can crash in a run. As an example, the paper shows that, while $\Diamond S_t$ allows solving 2-set agreement (and not consensus) and $\Diamond \phi^1$ allows solving t-set agreement (but not $(t-1)$-set agreement), their “addition” allows solving consensus. More generally, the paper studies the failure detector classes $\Diamond S_x$, $\Diamond \phi^y$ and Ω^2, and shows which reductions among these classes are possible and which are not. The paper presents also an Ω^2-based k-set agreement protocol. In that sense, it can be seen as a step toward the characterization of the weakest failure detector class that allows solving the k-set agreement problem.

* IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France achour@irisa.fr
** Instituto de Matemáticas, UNAM, D. F. 04510, Mexico rajsbaum@matem.unam.mx
*** IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France raynal@irisa.fr
**** IRISA, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France travers@irisa.fr
Résumé : Ce rapport étudie la composition de classes de détecteurs de fautes. Il montre aussi que certaines classes ne peuvent être composées pour donner des détecteurs d’une puissance supérieure.

Mots clés : Systèmes répartis asynchrones, Tolérance aux fautes, Crash de processus, Leader inéluctable, Classes de détecteurs de fautes, Réduction, Composition.
1 Introduction

Context of the work: failure detectors for agreement problems Consensus is one of the most fundamental problem in fault-tolerant distributed computing: each process proposes a value, and every non-faulty process must decide a value (termination) such that no two different values are decided (agreement) and the decided value is a proposed value (validity). Despite the simplicity of its definition and its use as a basic building block to solve distributed agreement problems, consensus cannot be solved in asynchronous system where even a single process can crash [8].

Several approaches have been investigated to circumvent this impossibility result. One of them is the failure detector approach [3, 22]. It consists in equipping the underlying system with a distributed oracle that provides each process with (possibly incorrect) hints on process failures. According to the type and the quality of the hints, several classes of failure detectors can be defined. As far as consensus is concerned, two classes are particularly important.

- The class of leader failure detectors [2] (denoted Ω). This class includes all the failure detectors that continuously output at each process a process identity such that, after some time, all the correct processes are provided with the same identity that is the identity of a correct process (eventual leadership). Before that time, different processes can be provided with distinct leaders (that can also change over time), and there is no way for the processes to know when this anarchy period is over. Ω-based asynchronous consensus protocols can be found in [9, 14, 20]

- The class of eventually strong failure detectors [3] (denoted ∆S). A failure detector of that class provides each process with a set of suspected processes such that this set eventually includes all the crashed processes (strong completeness) and there is a correct process p and a time at which no set contains the identity of p (eventual strong accuracy). ∆S-based asynchronous consensus protocols can be found in [3, 9, 18, 24].

Two important results are associated with these classes. First, they are equivalent (which means that it is possible, from any failure detector of any of these classes, to build a failure detector of the other class) [2, 5, 17]. Second, as far information on failures is concerned, they are the weakest class of failure detectors that allow solving consensus in asynchronous systems where a majority of processes are correct [2].

The k-set agreement problem relaxes the consensus requirement to allow up to k different values to be decided [4] (consensus is 1-set agreement). This problem is solvable in asynchronous system despite up to k − 1 process crash failures, but has been shown to be impossible to solve as soon as k or more processes can crash [1, 12, 23].

The failure detector class ∆S has been weakened in [19, 25] to address this problem. While the scope of the accuracy property of ∆S spans the whole system (there is a correct process that, after some time, is not suspected by any process), the class ∆S∗ is defined by the same completeness property and a limited scope accuracy property, namely, there is a correct process that, after some time, is not suspected by x processes. It is easy to see that ∆S∗ (where n is the total number of processes) is ∆S, while ∆S1 provides no information on failures. Moreover, ∆S∗t+1 ⊆ ∆S∗t. It has been shown that, when we consider the family (∆S∗t)1≤t≤n of failure detectors, ∆S∗t is the weakest class that allows solving k-set agreement in asynchronous systems for k = t − x + 2 (where t is an upper bound on the number of processes that can crash) [11] (message-passing systems must also satisfy the additional constraint of a majority of correct processes, t < n/2). The class ∆S∗ of failure detectors is a subset of ∆S. It has the same completeness property but a stronger accuracy property: it requires that, from the very beginning, there is a subset of x processes that a never suspect one correct process.

A new family of failure detectors (denoted (φy)0≤y≤n), has recently been introduced in [16] (where it is used in conjunction with conditions [15] to solve set agreement problems). A failure detector of the class φy provides the processes with a query primitive that has a parameter (a set X of processes) and returns a boolean answer. The invocation QUERY(X) by a process returns systematically true (resp., false) when 0 ≤ |X| ≤ t − y, i.e., when the set is too small (resp., |X| > t, i.e., when the set is too big). When t − y < |X| ≤ t (the set has then an appropriate size) QUERY(X) returns true only if all the processes in X have crashed; moreover, if all the processes of X have crashed and a process repeatedly issues QUERY(X), it

1 It is important to notice that the first version of the leader-based Paxos protocol dates back to 1989, i.e., before the Ω formalism was introduced.
eventually obtains the answer true. We have $\phi^{y+1} \subseteq \phi^y$. Moreover, ϕ^0 provides no information on failures, while, $\forall y \geq t$, ϕ^y is equivalent to a perfect failure detector (one that never does a mistake [3]). Φ is a subclass of ϕ^y that additionally requires the sets passed as query parameters to satisfy a containment property (i.e., any two such sets X_1 and X_2 need to be such that $X_1 \subseteq X_2$ or $X_2 \subseteq X_1$). It is shown in [16], that, in shared memory systems, Φ is the weakest failure detector class of the family $(\Phi^y)_{0 \leq y \leq t}$ that allows solving asynchronous k-set agreement with $k = t - y + 1$.

The family of failure detector classes $(\Omega^y)_{1 \leq y \leq n}$ [21] has been introduced to augment the synchronization power of object types in the wait-free hierarchy. A failure detector of the class Ω^y outputs at each process a set of at most z process identities such that, after some time, the same set including the identity of at least one correct process is output at all correct processes. Clearly, $\Omega^1 = \Omega$. Moreover, $\Omega^y \subseteq \Omega^{y+1}$.

Motivation and results The paper first extends the family $(\phi^y)_{0 \leq y \leq n}$, by considering its eventual counterpart, namely the family $(\Diamond \phi^y)_{0 \leq y \leq n}$. $\Diamond \phi^y$ is a weakening of ϕ^y in the sense it allows the properties defining ϕ^y to be satisfied only after some finite time. So, while the families $(S_x)_{1 \leq y \leq n}$ and $(\phi^y)_{0 \leq y \leq n}$ are characterized by a “perpetual” property (i.e., a property that has to be satisfied from the very beginning), the families $(\Diamond S_x)_{1 \leq y \leq n}$, $(\Omega^y)_{1 \leq y \leq n}$ and $(\Diamond \phi^y)_{0 \leq y \leq n}$ are characterized by an eventual property.

It appears that, when we are interested in solving set agreement problems, we are provided with three families of failure detectors: $(\Diamond S_x)_{1 \leq x \leq n}$, $(\Diamond \phi^y)_{0 \leq y \leq n}$ and $(\Omega^y)_{1 \leq z \leq n}$. Whatever the problems these failure detector classes help solving, important questions are the following: Which among these classes are equivalent? Which are not? Is it possible to combine some of them to obtain stronger failure detector classes? If the answer is “yes”, which ones and which failure detector class do they produce? If the answer is “no”, why? Etc. This is the type of questions addressed in this paper that characterizes relationships linking each pair of failure detector classes. More precisely, the issues and results of the paper are the following. The notation $A + B \sim C$ means that, given as inputs a failure detector of the class A and a failure detector of the class B, there is an algorithm that constructs a failure detector of the class C. The notation $A + B \not\sim C$ means that there is no such transformation algorithm. The notations $A \sim C$ and $A \not\sim C$ have the same meaning considering a single failure detector class as input.

- **Reducibility, Irreducibility and Minimality.**
 - Relations linking $\Diamond \phi^y / \Diamond \phi^0$ and $S_x / \Diamond S_x$:
 - Let $1 \leq x \leq t + 1$ and $1 \leq y \leq t$. $S_x \not\sim \Diamond \phi^0$. (Theorem 8.)
 - Let $0 \leq y < t$ and $1 \leq x \leq t + 1$. $\phi^y \not\sim S_x$. (Theorem 9.)
 - Relations linking $\Diamond \phi^y / \Diamond \phi^0$ and Ω^y:
 - $\Diamond \phi^y \sim \Omega^y$ iff $y + z > t$. (Corollary 6.)
 - Let $1 \leq z \leq t + 1$ and $1 \leq y \leq t$. $\Omega^y \not\sim \Diamond \phi^y$. (Theorem 10.)
 - Relations linking $\Diamond S_x$ and Ω^y:
 - $\Diamond S_x \sim \Omega^y$ iff $x + z > t + 1$. (Corollary 7.)
 - Let $1 \leq x, z \leq t$. $\forall z : \Omega^z \not\sim S_x$. (Theorem 11.)

All these relations are depicted in Figure 1 where the bold arrows mean reducibility, and the dotted arrows mean irreducibility. The class S_x is the subclass of $\Diamond S_x$ where the accuracy is perpetual (namely, there is a correct process that is not suspected by x processes from the very beginning). P is the class of perfect failure detectors [3] (the ones that never do a mistake). The column at the right of the figure concerns k-set agreement: all the failure detector classes in the kth line allow solving 2-set agreement. It is important to notice that (1) $\Diamond S_{t+2}$ and $\Diamond \phi^{t+1}$ cannot be compared, (2) both are stronger than Ω^2. Moreover, given a line (say z) of the figure, Ω^z is the weakest failure detector class of that line that allows solving k-set agreement.

- **Additivity.** This paper poses (for the first time to our knowledge) the question of adding failure detectors of distinct classes. This is an important issue as “additivity” is a crucial concept as soon modularity and scalability of distributed systems are concerned.

As an example, assuming $t > 1$, let us consider the class $\Diamond S_1$ that allows solving 2-set agreement (but not consensus), and the class $\Diamond \phi^1$ that allows solving t-set agreement (but not $(t-1)$-set agreement).
What about $\Diamond S_t + \Diamond \phi^1$? Is it possible to add them? If the answer is “yes”, which type of information on failures is provided by their combination? The paper shows that $\Diamond S_t + \Diamond \phi^1$ allows solving the consensus problem. More generally, with respect to the grid described in the previous figure, the paper characterizes which classes can be added and which cannot. More explicitly, it shows the following result (see also Figure 2): $\Diamond S_x + \Diamond \phi^y \cong \Omega^x \Leftrightarrow x + y + z > t + 1$. To that end, the paper presents a construction algorithm (sufficiency part, Figures 5 and 6), and an impossibility proof (necessity part, Theorem 7).

Intuitively, this shows that $\Diamond S_x$ and $\Diamond \phi^y$ provide different seeds to build Ω^x. To see the gain provided by such an addition, let us analyze it as follows:
- As $\Diamond S_x \cong \Omega^{x+2}$, the previous addition shows that adding ϕ^y allows strengthening Ω^{x+2} to obtain Ω^x with $z = (t - x + 2) - y$.
- Similarly, as $\Diamond \phi^y \cong \Omega^{y+1}$, the previous addition shows that adding $\Diamond S_x$ allows strengthening Ω^{y+1} to Ω^x with $z = (t - y + 1) - (x - 1)$.

- Asynchronous Ω^k-based k-set agreement. This paper proposes such an algorithm. (To our knowledge, no previous work has addressed the design of Ω^k-based k-set agreement algorithms.) The proposed algorithm (Figure 3) is very simple. Moreover, the paper establishes that $t < n/2$ and $z \leq k$ are two tight bounds of the k-set agreement problem, when considering the $(\Omega^k)_{1 \leq z \leq n}$ family of failure detectors in an asynchronous message-passing system (Theorem 4). Consequently, among all the classes described in Figure 1, Ω^k is the weakest class for solving asynchronous k-set agreement (hence, the algorithm is optimal in that respect). This constitutes a step towards the characterization of the weakest failure detector class that allows solving the k-set agreement problem.

From a methodology point of view, the paper uses as much as possible reduction algorithms (striving not to reinvent the wheel). The paper presents also two more transformations for particular cases. These transformations (given in appendix) are simpler and more efficient than the general transformation building a failure detector of the class Ω^z from failure detectors of the classes $\Diamond S_x$ and $\Diamond \phi^y$. The first (Figure 8) transforms Φ^y into Ω^z for $y + z > t$. The second (Figure 9) presents an addition algorithm of $\Diamond S_x$ with $\Diamond \phi^y$ that provides $\Diamond S$ when $x + y > t$.

Roadmap The paper is made up of 5 sections plus an appendix. Section 2 describes the asynchronous computing model and the classes of failure detectors we are interested in. Section 3 presents the asynchronous Ω^k-based k-set agreement algorithm. Then, Section 4 presents an algorithm that builds a failure detector of the class Ω^z from a pair of underlying failure detectors, one of the class $\Diamond \phi^y$, the other of the class $\Diamond S$.

![Figure 1: Grid of failure detector classes](image1)

![Figure 2: Additivity of $\Diamond S_x$ and $\Diamond \phi^y$](image2)
Section 5 shows that \(x+y+z > t+1 \) is a necessary requirement for the previous construction, and establishes the irreducibility relations depicted by the grid of Figure 1.

2 Computation Model

2.1 Asynchronous System with Process Crash Failures

We consider a system consisting of a finite set \(\Pi \) of \(n \geq 2 \) processes, namely, \(\Pi = \{p_1, p_2, \ldots, p_n\} \). When it is not ambiguous we also use \(\Pi \) to denote the set of the identities \(1, \ldots, n \) of the processes. A process can fail by crashing, i.e., by prematurely halting. It behaves correctly (i.e., according to its specification) until it (possibly) crashes. By definition, a process is correct in a run if it does not crash in that run; otherwise it is faulty. As previously indicated, \(t \) denotes the maximum number of processes that can crash in a run \((1 \leq t < n)\). The identity of the process \(p_i \) is \(i \), and each process knows all the identities.

Processes communicate and synchronize by sending and receiving messages through channels. Every pair of processes is connected by a channel. Channels are assumed to be reliable: they do not create, alter or lose messages. In particular, if \(p_i \) sends a message to \(p_j \), then eventually \(p_j \) receives that message unless it fails. There is no assumption about the relative speed of processes or message transfer delays (let us observe that channels are not required to be FIFO).

Broadcast\((m)\) is an abbreviation for “foreach \(p_j \in \Pi \) do send\((m)\) to \(p_j \) enddo”. Moreover, we assume (without loss of generality) that the communication system provides the processes with a reliable broadcast abstraction [10]. Such an abstraction is made up of two primitives Broadcast\((\cdot)\) and Deliver\((\cdot)\) that allow a process to broadcast and deliver messages (we say accordingly that a message is received by a process) and satisfy the following properties:

- **Validity**: If a process \(R \) broadcasts \(m \), then some process has \(R \) broadcasts \(m \). (No spurious messages.)

- **Integrity**: A process \(R \) delivers a message \(m \) at most once. (No duplication.)

- **Termination**: If a correct process \(R \) broadcasts \(m \) or \(R \) delivers a message \(m \), then all the correct processes \(R \) delivers \(m \). (No message \(R \) broadcast or \(R \) delivered by a correct process is missed by a correct process.)

As we can see, the messages sent (resp., \(R \) broadcasts or \(R \) delivers) by a process are not necessarily received (resp., \(R \) delivered) in their sending order. Moreover, different processes can \(R \) deliver messages in different order. There is no assumption on message transfer delays. The communication system is consequently reliable and asynchronous.

2.2 Failure Detector Classes

The definition of the families of failure detector classes \((S_x)_{1\leq x \leq n}, (\diamond S_x)_{1\leq x \leq n}, (\Phi \Psi)'_{0\leq y < n}, (\phi \psi)'_{0\leq y < n}\) and \((\Omega')_{1\leq x \leq n}\) have been sketched in the introduction. This section provides more complete definitions.

The classes \((S_x)_{1\leq x \leq n}\) and \((\diamond S_x)_{1\leq x \leq n}\) A failure detector of the class \(S_x \) or \(\diamond S_x \) consists of a set of modules, each one attached to a process: the module attached to \(p_i \) maintains a set (named \(\text{suspected}_i \)) of processes it currently suspects to have crashed. As in other papers devoted to failure detectors, we say “process \(p_i \) suspects process \(p_j \) at some time \(\tau \)”, if \(p_j \in \text{suspected}_i \) at that time. Moreover, (by definition) a crashed process suspects no process.

The failure detector \(\diamond S_x \) class generalizes the class \(\diamond \mathcal{S} \) defined in [3] (we have \(\diamond S_n = \diamond \mathcal{S} \)). A failure detector belongs to the class \(\diamond S_x \) if it satisfies the following properties:

- **Strong Completeness**: Eventually, every process that crashes is permanently suspected by every correct process.

- **Limited Scope Eventual Weak Accuracy**: There is a time after which there is a set \(Q \) of \(x \) processes such that \(Q \) contains a correct process and that process is never suspected by the processes of \(Q \).

Irisa
Similarly, the class \(S_x \) generalizes the class \(S \) [3] (and we have \(S_1 = S \)). A failure detector of the class \(S_x \) satisfies the previous strong completeness property, plus the following accuracy property:

- **Limited Scope Perpetual Weak Accuracy:** there is a set \(Q \) of \(x \) processes such that (from the very beginning) \(Q \) contains a correct process and that process is never suspected by the processes of \(Q \).

It is easy to see that \(S_{x+1} \subseteq S_x \), \(\diamond S_{x+1} \subseteq \diamond S_x \), and \(S_x \subseteq \diamond S_x \). It is also easy to see that the failure detectors of the classes \(S_1 \) and \(\diamond S_1 \) provide no information on failures. It has been shown in [11] that \(\diamond S_x \) is the weakest failure detector class of the family \((\diamond S_x)_{1 \leq x \leq n} \) that allows solving \(k \)-set agreement for \(k = t - x + 2 \), in asynchronous message-passing systems with a majority of correct processes \((t < n/2) \).

The classes \((\Omega^z)_{1 \leq z \leq n}\) This family of failure detectors has been introduced in [21]. A failure detector of the class \(\Omega^z \) maintains at each process \(p_i \) a set of processes of size at most \(z \) (denoted \(\text{trusted}_i \)) that satisfies the following property:

- **Eventual Multiple Leadership:** there is a time after which the sets \(\text{trusted}_i \) of the correct processes contains forever the same set of processes and at least one process of this set is correct.

The family \((\Omega^z)_{1 \leq z \leq n}\) generalizes the class of failure detectors \(\Omega \) defined in [2] (we have \(\Omega^1 = \Omega \)).

Recently, another generalization of \(\Omega \) has been studied in [7] that considers \(\Omega_S \), where \(S \) is a predefined subset of the processes of the system. \(\Omega_S \) requires that all the correct processes of \(S \) eventually agree on the same correct leader (it is not required that their eventual common leader belongs to \(S \)). Let \(X \) be the set of all the pairs of processes. It is shown in [7] that, given all the \(\Omega_S \), \(x \in X \), it is possible to build \(\Omega \).

The classes \((\Phi^y)_{0 \leq y \leq n}\) and \((\phi^y)_{0 \leq y \leq n}\) These failure detector classes have been introduced in [16] to solve set agreement problems in combination with conditions [15]. Differently from the previous classes of failure detectors that provides each process \(p_i \) with a set \(\text{suspected}_i \) or \(\text{trusted}_i \) that \(p_i \) can only read, a failure detector of a class \(\phi^y \) (or \(\Phi^y \)) provides the processes with a primitive \(\text{QUERY}(X) \), where \(X \) is a set of process identities supplied by the invoking process. Such a primitive allows a process \(p_i \) to query about the crash of a region \(X \) of the system. More precisely, a failure detector of the class \(\phi^y \) is defined by the following properties (remind that \(t \) is an upper bound on the number of process crashes):

- **Triviality property.** If \(|S| \leq t - y \), then \(\text{QUERY}_y(X) \) returns \(\text{true} \). If \(|S| > t \), then \(\text{QUERY}(X) \) returns \(\text{false} \).

- **Safety property.** If \(t - y < |X| \leq t \), then if at least one process in \(X \) has not crashed when \(\text{QUERY}(X) \) is invoked, the invocation returns \(\text{false} \).

- **Liveness property.** Let \(X \) be such that \(t - y < |X| \leq t \). Let \(\tau \) be a time such that, at time \(\tau \), all the processes in \(X \) have crashed. Moreover, let us assume that after \(\tau \) there is an infinite sequence of invocations of \(\text{QUERY}(X) \). Then, for some time \(\tau' \geq \tau \), all the invocations of \(\text{QUERY}(X) \) return \(\text{true} \).

The triviality property provides the invoking process with a trivial output when the set \(X \) is too small or too big. The safety property states that if the output is \(\text{true} \), then all the processes in \(X \) have crashed. The liveness property states that \(\text{QUERY}(X) \) eventually outputs \(\text{true} \) when all the processes in \(X \) have crashed. It is shown in [16] that (1) \(\phi^{y+1} \subseteq \phi^y \), and (2) \(\phi^1 \) and the class \(\mathcal{P} \) of perfect failure detectors are equivalent in any system where at most \(t \) processes can crash. Moreover, it is easy to see that \(\phi^0 \) provides no information on failures.

The class \(\Phi^y \) is a subclass of \(\phi^y \). It additionally requires that for any pair of queries \(\text{QUERY}(X_1) \) and \(\text{QUERY}(X_2) \), we have \(X_1 \subseteq X_2 \) or \(X_2 \subseteq X_1 \). Hence, we have \(\Phi^y \subseteq \phi^y \). It has been shown in [16] that, within the family \((\Phi^y)_{0 \leq y \leq n}\) of failure detector classes, \(\Phi^y \) is the weakest for solving \(k \)-set agreement for \(k = t - y + 1 \), in asynchronous shared memory systems.

Pl n ' 1758
The classes \((\diamond \phi^y)_{0 \leq y < n} \) The failure detector class \(\diamond \phi^y \) is the “eventual” counterpart of the class \(\phi^y \). More precisely, a failure detector of the class \(\diamond \phi^y \) is defined by the following properties (remind that \(t \) is an upper bound on the number of process crashes):

- **Triviality property.** If \(|S| \leq t - y\), then \(\text{QUERY}_y(X) \) returns \(\text{true} \). If \(|S| > t\), then \(\text{QUERY}(X) \) returns \(\text{false} \).
- **Eventual Safety property.** Let \(X \) be such that \(t - y < |X| \leq t \). Suppose that at least one correct process belongs to \(X \). Moreover, let us assume that there is an infinite sequence of invocation of \(\text{QUERY}(X) \). Then, it exists some time \(\tau \) from which all the invocations of \(\text{QUERY}(X) \) return \(\text{false} \).
- **Liveness property.** Let \(X \) be such that \(t - y < |X| \leq t \). Let \(\tau \) be a time such that, at time \(\tau \), all the processes in \(X \) have crashed. Moreover, let us assume that after \(\tau \) there is an infinite sequence of invocations of \(\text{QUERY}(X) \). Then, for some time \(\tau' \geq \tau \), all the invocations of \(\text{QUERY}(X) \) return \(\text{true} \).

As for the classes \((\phi^y)_{0 \leq y < t} \), it follows from these properties that (1) \(\diamond \phi^{y+1} \subseteq \diamond \phi^y \), and (2) \(\diamond \phi^t \) and the class \(\diamond \mathcal{P} \) are equivalent in any system where at most \(t \) processes can crash.

2.3 Notation

Let \(\mathcal{F} \) and \(\mathcal{G} \) be any two classes among the previous classes of failure detectors. The notation \(\mathcal{A} \mathcal{S}_{n,t}[\mathcal{F}] \) is used to represent a message-passing asynchronous system made up of \(n \) processes, where up to \(t \) may crash, equipped with a failure detector of the class \(\mathcal{F} \). Similarly, \(\mathcal{A} \mathcal{S}_{n,t}[\mathcal{F}, \mathcal{G}] \) denotes a system equipped with a failure detector of the class \(\mathcal{F} \) and a failure detector of the class \(\mathcal{G} \). Finally, \(\mathcal{A} \mathcal{S}_{n,t}[\emptyset] \) denotes a “pure” asynchronous message-passing system (i.e., without additional equipment).

3 Using \(\Omega^k \) to Solve \(k \)-Set Agreement

This section presents an \(\Omega^k \)-based \(k \)-set agreement algorithm, and lower bounds when solving \(k \)-set agreement with failure detector classes of the family \((\Omega^k)_{1 \leq k \leq n} \). These lower bounds are \(t < n/2 \) and \(z \leq k \).

Interestingly, the proof of these bounds is based on a reduction to a \(\diamond \mathcal{S}_e \)-based \(k \)-set agreement algorithm and a corresponding lower bound [11].

3.1 A \(k \)-Set Agreement Algorithm

The algorithm, described in Figure 3, is a simple adaptation of an \(\Omega \)-based consensus algorithm described in [9] (which is in turn inspired from a \(\diamond \mathcal{S} \)-based consensus algorithm described in [18]); it assumes \(t < n/2 \). A process \(p_i \) invokes \(k \)-set AGREEMENT\((v_i)\), where \(v_i \) is the value it proposes. If it does not crash, it terminates when it executes the statement \(\text{return}(v) \), where \(v \) is then the value it decides.

The function \(k \)-set AGREEMENT\((v_i) \) is made up of two tasks. The task \(T2 \) is used to disseminate a decided value and prevent deadlock: due to the reliable broadcast, as soon as a process decides, all the correct processes decide. In the main task \(T1 \), the processes proceed in consecutive asynchronous rounds, each round being made up of two phases, each including a communication step. When considering \(p_i \), the local variable \(est_i \) is the local estimate of the decision value; \(r_i \) is its current round number.

During the first phase of round \(r \), \(p_i \) first reads \(trusted_i \) (the set provided by its underlying failure detector module of the class \(\Omega^r \)), stores its value in \(L_i \), and sends a PHASE1\((r_i, L_i, est_i)\) message to all the processes. Then, \(p_i \) waits until it has received such round \(r \) messages from \(n - t \) processes (i.e., from at least a majority) and it has either received such a message from a process of its \(L_i \) set or the set \(trusted_i \) has changed. Then, if a majority of processes have the same leader set \(L \), and \(p_i \) has received an estimate value \(v_j \) from a process in this set \(L \), it keeps \(v_j \) in \(aux_i \), otherwise it sets \(aux_i \) to \(\bot \). Let us notice that we can conclude from the previous statements (see the proof) that, at the end of the first phase of each round, the set of the \(aux_i \) local variables contains at most \(|L_i| = k \) distinct values different from \(\bot \).

The second phase of a round aims at allowing the processes to decide, while ensuring that no more than \(k \) different values are decided, whatever the round during which a process decides. To that end, each process

Irisa
\begin{figure}[h]
\centering
\begin{minipage}[t]{.8\textwidth}
\begin{algorithm}
\textbf{Function} \textit{k-set_agreement}(v_i): \hspace{1em} \text{Init:} \ est_i \leftarrow v_i; \ r_i \leftarrow 0
\begin{algorithmic}
\STATE \textbf{Task} T1:
\STATE \hspace{1em} \textbf{while} true \textbf{do}
\STATE \hspace{2em} \textbf{Phase 1}
\STATE \hspace{3em} \(r_i \leftarrow r_i + 1; \ L_i \leftarrow \text{trusted}_i \); \hspace{1em} \text{(01)}
\STATE \hspace{3em} \texttt{Broadcast} \text{phase1}(r_i, L_i, est_i); \hspace{1em} \text{(02)}
\STATE \hspace{3em} \texttt{wait until} \ \{(\text{phase1}(r_i, v) \quad \text{received from} \geq (n-t) \ \text{processes})\}; \hspace{1em} \text{(04)}
\STATE \hspace{3em} \texttt{wait until} \ \{(\text{phase1}(r_i, v) \quad \text{received from a process} \in L_i) \lor (L_i \neq \text{trusted}_i)\}; \hspace{1em} \text{(05)}
\STATE \hspace{3em} \text{if} \ \{(\exists L: \text{phase1}(r_i, L, \perp) \ \text{received from a majority of processes}) \land (\text{phase1}(r_i, v_L) \ \text{received from a process} \in L)\} \\text{then aux}_i \leftarrow v; \hspace{1em} \text{else} \ aux_i \leftarrow \perp \textbf{end if}; \hspace{1em} \% \text{Here} \ TC \neq J \ \text{aux}_j \in \Pi \land aux_j \neq \perp \leq \text{phase1}(r_i, v_L) \ \text{received from a process} \in L)
\STATE \hspace{3em} \text{Broadcast} \text{phase2}(r_i, aux_i); \hspace{1em} \text{(08)}
\STATE \hspace{2em} \textbf{Phase 2}
\STATE \hspace{3em} \text{wait until} \ \{(\text{phase2}(r_i, v) \quad \text{received from} \geq (n-t) \ \text{processes})\}; \hspace{1em} \text{(10)}
\STATE \hspace{3em} \texttt{let} rec_i = \{aux : \text{phase2}(r_i, aux) \ \text{has been received}\}; \hspace{1em} \text{(11)}
\STATE \hspace{3em} \text{if} \ \{(\exists v : v \neq \perp \land v \in \text{rec}_i) \text{ then} \ est_i \leftarrow v; \hspace{1em} \textbf{end if}; \hspace{1em} \% \text{Here} \ TC \neq J \ \text{aux}_j \in \Pi \land aux_j \neq \perp \leq \text{phase1}(r_i, v_L) \ \text{received from a process} \in L)
\STATE \hspace{3em} \text{if} \ \{(\perp \notin \text{rec}_i) \text{ then} \ R_\text{Broadcast} \text{decision}(est_i); \hspace{1em} \text{stop} \ T1 \ \text{end if} \hspace{1em} \% \text{Here} \ TC \neq J \ \text{aux}_j \in \Pi \land aux_j \neq \perp \leq \text{phase1}(r_i, v_L) \ \text{received from a process} \in L)
\STATE \hspace{1em} \textbf{end do}
\STATE \hspace{1em} \textbf{Task} T2: \texttt{when} \text{decision}(v) \texttt{is} \texttt{R} \texttt{delivered} \texttt{:} \ \text{return}(v); \texttt{stop} \ T2
\end{algorithmic}
\end{algorithm}

\end{minipage}
\caption{\(\Omega^k \)-based \(k \)-set agreement algorithm (code for \(p_i \))}
\end{figure}

3.2 Short Discussion

The notion of \textit{perfection, oracle-efficiency} and \textit{zero-degradation} used here are straightforward generalizations of the same notions introduced in [6, 9] in the context of failure detector-based consensus algorithms.

Let a failure detector of the class \(\Omega^k \) be \textit{perfect} if, from the very beginning, it delivers to the processes the same set of at most \(k \) processes including at least one correct process. A set agreement algorithm is \textit{oracle-efficient} if it terminates in two communication steps (a single round) when its underlying failure detector is perfect and there is no crash. It is easy to see that the previous algorithm is oracle-efficient. This algorithm satisfies an even stronger property, namely, it is zero-degrading. A set agreement algorithm is \textit{zero-degrading} if it terminates in two steps when its underlying failure detector is perfect and there are only initial crashes (a crash is \textit{initial} if the corresponding process crashes before the algorithm starts). The reader can easily checks that the proposed algorithm is zero-degrading. \textit{Zero-degradation} is particularly important when a set agreement algorithm is used repeatedly: it means that future executions do not suffer from past process failures as soon as the failure detector behaves perfectly.

3.3 Proof of the Algorithm

The proof is similar to the proof of the \(\Omega \)-based consensus algorithm described in [9]. It assumes \(t < n/2 \) and \(z \leq k \) (see Theorem 4).

\textbf{Lemma 1} \textit{No correct process blocks forever in a round.}

\textbf{Proof} Let \(p_i \) be a correct process. We have to show, whatever the round number \(r \), that \(p_i \) cannot be blocked forever in the \texttt{wait} statements (lines 04, 05 and 10) of round \(r \). This follows from (1) the fact that \(t \) being the maximum number of faulty processes, (2) the termination and integrity properties of the reliable
broadcast primitive, as well as (3) the fact that the leader set eventually permanently contains a correct process. In more detail, we have the following.

If a process decides, then by the termination property of the reliable broadcast of the corresponding `DECISION()` message, every correct process decides, and consequently no correct process can block forever in a round. Assume by contradiction that no process decides. Let \(r \) be the smallest round in which some correct process \(p_i \) blocks forever. So \(p_i \) blocks at line 04, 05 or 10. Consider the case of line 04. Since no correct process blocks in a round \(r' < r \) and no correct process decides, all correct processes broadcast a `PHASE1(r, __)` message. As the maximum number of faulty processes is \(t \), it follows from the integrity and termination of the broadcast primitive that \(p_i \) eventually delivers \(n - t \) such messages. Consequently, \(p_i \) cannot block at line 04. The fact that \(p_i \) cannot block forever at line 05 follows directly from the fact that its local set `trusted` eventually permanently contains the identity of a correct process and the fact that all the correct processes broadcast a `PHASE2(r, __)` message. Consequently (as in line 04), \(p_i \) does not block forever at line 10.

Lemma 2: \(\forall r : |\{ v : v \in AUX[r] \land v \neq \perp \}| \leq k. \)

Proof: Let \(p_i \) be a process that completes phase 1 of round \(r \). Let us observe that \(p_i \) sets \(aux_i \) to a value \(v \neq \perp \) only if it sees that a majority of processes have the same leader set \(L \) (lines 06-08). Moreover, \(v \) is a value proposed by a process that belongs to \(L \). Let us notice that there is at most one set that is considered leader set by a majority of processes. Consequently, all the values \(aux_i \neq \perp \) at the end of the round \(r \) are estimate values of processes belonging to the same set \(L \). Since this set is of size \(k \), it follows that \(|\{ aux_i[r] : aux_i[r] \neq \perp \land p_i \) completes phase 1 of round \(r \}| \leq k. \)

Lemma 3: Suppose that no process decides. \(\exists r : \perp \notin AUX[r]. \)

Proof: It follows from the eventual multiple leadership of the class \(\Omega^k \) that there is a time \(\tau \) after which all the processes have permanently the same leader set \(L \) and this set contains a correct process. Let \(r \) be a round that starts after that time (i.e., the first process, say \(p_i \), that executes \(r_i \leftarrow r \) does so at time \(r' > \tau \)). As no correct process blocks in the round \(r \) (Lemma 1), each correct process broadcasts `PHASE1(r, __)`, from which it follows that the condition of the if statement of line 06-07 is satisfied for all the processes that complete phase 1 of round \(r \). Consequently, no process \(p_i \) sets its \(aux_i \) variable to \(\perp \).

Theorem 1: [Validity] Any decided value is a proposed value.

Proof: The special value \(\perp \) cannot be decided (lines 12-13). Moreover, it follows from the integrity and validity of the broadcast primitive that the \(aux_i \) and \(est_i \) variables can only contain proposed values or \(\perp \).

Theorem 2: [Agreement] At most \(k \) distinct values are decided.

Proof: If no process decides, the theorem is trivially true. So, let us assume that a process decides and let \(r \) be the smallest round during which some process decides (“decide \(v \) during \(r \)” means “during \(r \), execute line 13 with \(\perp \notin rec_i \land est_i = v'' \)”). We first show that there is a set \(V \) of values, \(|V| \leq k \), such that any process that decides during \(r \) decides a value from \(V \). We then show any value decided during a subsequent round belongs to \(V \).

Let \(V = \{ v : v \in AUX[r] \land v \neq \perp \} \). As we first notice that \(|V| \leq k \) (Lemma 2). Let \(p_i \) be a process that decides during round \(r \). Let \(rec_i[r] \) be the value of the set \(rec_i \) computed at line 11 of round \(r \). Let us observe that \(rec_i[r] \subseteq AUX[r] \) (lines 10-11). Since \(p_i \) decides a value \(v \neq \perp \) in \(rec_i[r] \), we have \(v \in V \).

Assuming that some process \(p_i \) decides a value \(v \in V \) during round \(r \), we now prove that the estimate \(est_j \) of any process \(p_j \) that progresses to \(r + 1 \) belongs to \(V \). As there are at least \(n-t \) `PHASE2(r, __)` messages
carrying a value $aux \neq \bot$ (these are the messages that allowed p_i to decide during round r) and $n - t > n/2$, it follows from the integrity and validity properties of the broadcast primitive that p_j has received at least one of these PHASE2 messages. Consequently, when p_j executes line 12, it updates its estimate to a value $aux \neq \bot$. Hence, from definition of set V we have $est_j \in V$. It follows that estimate est_j of all the processes p_j that start the round $r + 1$ belong to V.

Theorem 3 [Termination] Every correct process eventually decides.

Proof The proof is by contradiction. Assume that no correct process decides. By Lemma 1, the correct processes progress from round to round. Hence, due to Lemma 3, there is a round r such that $\bot \notin AUX[r]$. Consequently, any PHASE2(r, aux) that is broadcast is such that $aux \neq \bot$. Due to the integrity and termination properties of the broadcast primitive, we have $\bot \notin rec_i$ for any process p_i executing the second phase of round r. We can then conclude (line 13) that the correct processes decide: a contradiction.

3.4 A Lower Bound

Considering an asynchronous message-passing system equipped with a failure detector of the class Ω^2, $1 \leq z \leq n$, this section establishes that $t < n/2$ and $z < k$ are necessary and sufficient conditions for solving the k-set agreement problem. As already noticed, this result is obtained by a reduction to the problem of the weakest failure detector in the family ($\Diamond S_x$)$_{1 \leq x \leq n}$ that allows solving k-set agreement.

Theorem 4 The k-set agreement problem is solvable in $AS_{n,t}[\Omega^2]$ if and only if $t < n/2$ and $z < k$.

Proof [\Rightarrow part] The proof is by contradiction. Let us assume that there is an algorithm \mathcal{A} that solves the k-set agreement problem in $AS_{n,t}[\Omega^2]$ such that $t \geq n/2$ or $z > k$. Due to Theorem 7, there is an algorithm \mathcal{T} that builds a failure detector of the class Ω^2 in $AS_{n,t}[^k S_{t+z+2}]$. Moreover, there are such transformation algorithms (e.g., the one presented in Section 4 with $y = 0$) that are independent of the value of t (i.e., $t < n$). Combining such a transformation \mathcal{T} and the algorithm \mathcal{A}, we obtain an algorithm that solves the k-set agreement problem in $AS_{n,t}[^k S_{t+z+2}]$. It then follows from the lower bound established by Herlihy and Penso [11] for solving the k-set agreement problem in $AS_{n,\frac{n}{2}}[^k S_{t+z+2}]$ that $t < \min(n/2, (t - z + 2) + k - 1)$, from which we conclude $t < n/2$ and $z < k$: a contradiction. [\Leftarrow part] This part follows directly from the very existence of the Ω^2-based k-set agreement algorithm described in Section 3.1 and proved in Section 3.3.

4 Additivity of the Failure Detector Classes $\Diamond S_x$ and $\Diamond \phi^y$

This section presents an algorithm that, given as input any pair of failure detectors of the classes $\Diamond S_x$ and $\Diamond \phi^y$, constructs a failure detector of the class Ω^2, provided that $x + y + z > t + 1$. (It is proved in Section 5.1 that this is a necessary requirement for such a construction, thereby showing that the algorithm is optimal.)

The algorithm is made up of two components that we call *wheels* because each “turns” like a gear-wheel until they become synchronized and stop turning. The wheel that is the first to eventually stop is the one whose progress depends on the the underlying $\Diamond S_x$ failure detector (“lower” wheel). When it stops, it provides a property that allows the second wheel in turn to eventually stop (“upper” wheel). As we will see, the wheel metaphor comes from the fact that each component is made up of main tasks that “turn”, each scanning a sequence until some property becomes satisfied.

Let us remind that $1 \leq x \leq n$. Moreover, as the class $\Diamond \phi^t$ is equivalent to the class of eventual perfect failure detectors we consider only the cases $0 \leq y \leq t$, from which we conclude $t - y + 1 > 0$. Finally, as $z \geq t + 2 - (x + y)$ is a necessary requirement and Ω^2 is the strongest class in the family $(\Omega^2)_{1 \leq z \leq n}$, the only interesting cases for the pair (x, y) are when $t + 2 - (x + y) \geq 1$. Hence, in the following we consider that $t - y + 1 > 0$, $z = t + 2 - (x + y)$ and $t + 2 - (x + y) > 0$.
4.1 The Lower Wheel Component

4.1.1 Description

The aim of this component is to provide each process p_i with a local variable repr_i, intended to contain a process identity and such that the following property becomes eventually satisfied: there is a set X of x processes that either have crashed, or the variables repr_i of the processes of X that have not crashed, contains the identity ℓx_i of one of them that is a correct process. This process is their common representative (leader). The variable repr_i of a process p_i that does not belong to X has to be equal to the identity i of p_i.

To attain this goal the processes use their local sets suspected_i that collectively satisfy the completeness and limited scope eventual accuracy properties defining the class $\Diamond \Sigma_x$. Let \mathcal{X} be the finite set of all the sets of x processes that can be built from the set $\Pi = \{p_1, \ldots, p_n\}$. Let nb_x denote the number of combinations of x elements in a set of n elements. \mathcal{X} has nb_x elements. Let us organize \mathcal{X} as a sequence, and let $\mathcal{X}[k]$ be its kth element, $1 \leq k \leq \text{nb}_x$. Within $\mathcal{X}[k]$, let us arrange the processes it is made up of in some predefined (arbitrary) order: $\ell^1_1, \ell^1_2, \ldots, \ell^1_x, \ell^{i+1}_1, \ell^{i+1}_2, \ldots, \ell^{i+1}_x, \ell^{b_k}_x, \ldots, \ell^{b_k}_x$. This means that the infinite sequence $\mathcal{X}[1], \mathcal{X}[2], \ldots, \mathcal{X}[\text{nb}_x], \mathcal{X}[1], \mathcal{X}[2], \ldots, \mathcal{X}[\text{nb}_x], \mathcal{X}[1], \ldots$ gives rise to an infinite sequence of process identities, namely, $\ell^1_1, \ell^1_2, \ell^1_x, \ell^{i+1}_1, \ell^{i+1}_2, \ell^{i+1}_x, \ell^{b_k}_x, \ldots$ (see Figure 4). This sequence is assumed to be initially known by all the processes in order they can scan it in the same order.

In addition to its output repr_i, each process p_i manages a local set X_i and a local variable ℓx_i. It starts with X_i initialized to $\mathcal{X}[1]$, and ℓx_i initialized to ℓ^1_1 (the first process of $\mathcal{X}[1]$). Then, it uses the function $\text{Next}(\cdot, \cdot)$ defined as follows to progress along the infinite sequence of process identities. $\text{Next}(\ell^k_y, \mathcal{X}[k])$ outputs the pair $(\ell^k_{y+1}, \mathcal{X}[k])$ if $y < x$ and the pair $(\ell^{i+1}_1, \mathcal{X}[k+1])$ if $y = x$ (with $k+1$ being replaced by 1 when $k = \text{nb}_x$).

```
Init: $X_i \leftarrow \mathcal{X}[1]$; $\ell x_i \leftarrow \ell^1_1$; $\text{repr}_i \leftarrow i$

Task T1: repeat forever
  
  if ($i \in X_i$) then $\text{repr}_i \leftarrow \ell x_i$ else $\text{repr}_i \leftarrow i$ end if;

  if ($i \in X_i \land (\ell x_i \in \text{suspected}_i)$) then $\text{R-Broadcast } \text{X-Move}((\ell x_i, X_i))$ end if

end repeat

Task T2: when $\text{X-Move}(\ell x_i, X_i)$ is $\text{R-delivered}$: $(\ell x_i, X_i) \leftarrow \text{Next}(\ell x_i, X_i)$
```

Figure 5: From $\Diamond \Diamond \theta + \Diamond \Sigma_x$ to Ω^2: lower wheel component (code for p_i)

The behavior of the lower wheel component of a process p_i is described in Figure 5. It is made up of two simple tasks. The processes scan the infinite sequence of sets generated from \mathcal{X} until they stabilize. X_i represents the set of x processes that are currently in charge of extracting a common representative ℓx_i from this set. To do it, each process p_i that belongs to X_i uses its set suspected_i provided by the underlying failure detector of the class $\Diamond \Sigma$. If the processes of X_i succeed in not suspecting one of them - whose identity is kept by p_i in ℓx_i - they stop sending X-Move() messages. Differently, if a process p_j of the set X_i suspects its current “leader” ℓx_j, it uses the reliable broadcast primitive to send the message $\text{X-Move}(\ell x_j, X_i)$ indicating Irisa.
Lemma 4 \(\forall i \in C, \) there are a pair \((\lambda_i, \sigma_i)\) and a time \(\tau_i\) such that \(\forall \tau \geq \tau_i : (\ell x_i^\tau, X_i^\tau) = (\lambda_i, \sigma_i)\).

Proof We claim (Claim C1) that there is a pair \((\ell, X)\) such that the number of \(X_M(\ell, X)\) messages that are sent is finite. Let us assume (by way of contradiction) that there is no pair \((\lambda, \sigma)\) such that after some time \((\ell x_i, X_i) = (\lambda, \sigma)\) remains true forever. As the pairs \((\ell x_i, X_i)\) are arranged in a logical ring (see Figure 4), it follows from the way \(p_i\) updates its local pair \((\ell x_i, X_i)\) that the sequence of the successive values of the local variables \((\ell x_i, X_i)\) is \((\ell_i^1, X_i^1), (\ell_i^2, X_i^2), \ldots, (\ell_i^n, X_i^n), (\ell_i^1, X_i^1), \) etc. Consequently, \((\ell x_i, X_i)\) takes each values \((\ell_i^\alpha, X_i^\beta)\), \(1 \leq \alpha \leq x, 1 \leq \beta \leq nb x\) infinitely often. In particular, \(p_i\) executes \((\ell x_i, X_i) \leftarrow \text{Next}(\ell, X)\) infinitely often. But this contradicts the Claim C1 that states that the number of \(X_M(\ell, X)\) messages that are sent is finite. It follows that there is a pair \((\lambda_i, \sigma_i)\) and a time \(\tau_i\) such that \(\forall \tau \geq \tau_i : (\ell x_i^\tau, X_i^\tau) = (\lambda_i, \sigma_i)\).

Claim C1: There is a pair \((\ell, X)\) such that the number of \(X_M(\ell, X)\) messages that are sent is finite.

Proof of Claim C1 We consider two cases according to the number \(f\) of actual process crashes.

- Case 1: \(f \geq x\). Let \(X\) be a set of \(x\) processes that are faulty and \(\ell\) be the identity of an arbitrary process in \(X\). As only processes that belongs to \(X\) can send \(X_M(\ell, X)\) messages, it follows from the fact all these processes eventually stop taking steps that the number of \(X_M(\ell, X)\) messages sent is finite.

- Case 2: \(f < x\). Due to the limited scope eventual accuracy property of the class \(\Diamond S_x\), there are a set \(X \subseteq \Pi\) of size \(x\) and a correct process \(p_i \in X\) such that, after some time \(\tau\), no process that belongs to the set \(X\) suspects \(p_i\). Since (1) only process that belongs to \(X\) can send \(X_M(\ell, X)\) messages, and, (2) a process \(p_i \in X\) broadcasts a \(X_M(\ell, X)\) message only if \(\ell \in \text{suspected}_i\), it follows that after time \(\tau\) no message \(X_M(\ell, X)\) can be broadcast, which implies that the number of such messages is finite. End of the Proof of Claim C1.

Corollary 1 The protocol is quiescent (i.e., eventually all the processes stop sending \(X_M\) messages).

Proof Let us assume (for contradiction) that there is a correct process \(p_i\) that never stop sending \(X_M\) messages. Due to Lemma 4, there is a time \(\tau\) after which \((\ell x_i, X_i)\) remains permanently equal to the constant pair \((\lambda_i, \sigma_i)\). Consequently, after time \(\tau\), \(p_i\) keeps on broadcasting \(X_M(\lambda_i, \sigma_i)\). It follows then from the validity and termination properties of the reliable broadcast primitive that there is a time \(\tau' > \tau\) at which \(p_i\) executes \((\ell x_i, X_i) \leftarrow \text{Next}(\lambda_i, \sigma_i)\), contradicting Lemma 4.

Lemma 5 \(\forall i, j \in C : (\lambda_i, \sigma_i) = (\lambda_j, \sigma_j)\). (In the following, \((\lambda, \sigma)\) denotes that pair.)

Proof Due to the properties of the reliable broadcast primitive, \(p_i\) and \(p_j\) deliver the same multisets of \(X_M(\ell, X)\) messages. Moreover, it follows from Corollary 1 that this multiset is finite. Due to the fact that \(p_i\) and \(p_j\) consume the messages according to the same ring order, and the fact that the common multiset of delivered messages is finite, it follows that \((\lambda_i, \sigma_i) = (\lambda_j, \sigma_j)\).
Lemma 6 \((\sigma \cap C \neq \emptyset) \Rightarrow (\lambda \in C)\).

Proof Let us assume (by contradiction) that \(\sigma \cap C \neq \emptyset\) and \(\lambda\) is the identity of a faulty process. Let \(p_i\) be a process that belongs to \(\sigma \cap C\). Due to the strong completeness property of the class \(\Diamond S_p\), it exists a time \(\tau_1\) after which the local predicate \(\lambda \in \text{suspected}\) remains permanently satisfied. Moreover, it follows from Lemmas 4 and 5 that, from some time \(\tau_i\), the predicate \((\varepsilon, X_i) = (\lambda, \sigma)\) remains permanently true. There is consequently a time \(\tau \geq \max(\tau_1, \tau_i)\) at which \(p_i\) broadcasts a message \(\text{X_MOVE}(\lambda, \sigma)\). When \(p_i\) delivers this message, it executes \((\varepsilon, X_i) \leftarrow \text{Next}(\lambda, \sigma)\), contradicting Lemma 4. \(\square\)

Theorem 5 *The algorithm described in Figure 5 ensures the existence of a set \(X\) and a time \(\tau\) such that \(\forall \tau' \geq \tau\), the following holds:

1. \(|X| = x\),
2. \(i \in \Pi - X \Rightarrow \text{repr}_i = i\),
3. \(\forall i, j \in X \cap C : \text{repr}_i = \text{repr}_j = \rho \in C \cap X\).

Proof Let \(\tau = \max\{\tau_i : i \in \Pi\}\) where \(\tau_i\) is the time introduced in Lemma 4, and \(\sigma\) and \(\lambda\) be the set and the process identity defined in Lemma 5. Let us first observe that due to its definition (\(\sigma\) is a set \(X_i\)) we have \(|\sigma| = x\) (1). Let \(p_i\) be a correct process. If \(i \in \Pi - X\), then as the value of \(\text{repr}_i\) does not change after time \(\tau\) (Lemma 4 and Task T1), it follows that \(\text{repr}_i = i\) is permanently true from time \(\tau\) (2). Moreover, it directly follows from Lemma 5 and task T1 that all the correct processes \(p_j\) belonging to the set \(\sigma\) have permanently the same representative \(\text{repr}_j = \lambda\) from time \(\tau\). Finally, \(\lambda\) is the identity of a correct process since to Lemma 6 (3). Taking \(X = \sigma\), \(\tau = \max\{\tau_i : i \in \Pi\}\) and \(\rho = \lambda\) completes the proof of the theorem. \(\square\)

4.2 The Upper Wheel Component

4.2.1 Principles and description

The “upper wheel” component consists of four tasks T3 – T6 (Figure 6). Similarly to the lower wheel component, it uses a set, that we call \(\mathcal{Y}\), including all the possible sets of \(t - y + 1\) processes built from the \(n\) processes composing the system. Let \(n\) denote the number of such distinct sets. Organizing \(\mathcal{Y}\) as a sequence, let \(\mathcal{Y}[k]\) be its \(k\)th element, and let us consider the infinite sequence \(\mathcal{Y}[1], \mathcal{Y}[2], \ldots, \mathcal{Y}[n\cdot \mathcal{L}], \mathcal{Y}[1], \ldots\). Moreover, given any set \(\mathcal{Y}[k]\) of this sequence, let us consider all its subsets of size \(z = (t + 2) - (x + y)\) (let \(n\cdot \mathcal{L}\) denote the number of such subsets). Finally, let us order them (the order is arbitrary). Let \(L_1^k, L_2^k, \ldots, L_{n\cdot \mathcal{L}}^k\) denote the sequence of all the sets of size \((t + 2) - (x + y)\) generated from the set \(\mathcal{Y}[k]\) (whose size is \(t - y + 1\)). As before, the infinite sequence \(L_1^1, L_2^1, \ldots, L_{n\cdot \mathcal{L}}^1, L_1^2, \ldots, L_{n\cdot \mathcal{L}}^2, L_1^3, \ldots, L_{n\cdot \mathcal{L}}^3, \ldots\) is initially known by each process. The function \(\text{Next}(L_r^k, \mathcal{Y}[k])\) is defined similarly to the previous \(\text{Next}()\) function. It outputs \((L_r^{k+1}, \mathcal{Y}[k] + 1)\) if \(r < n\cdot \mathcal{L}\), and outputs \((L_1^{k+1}, \mathcal{Y}[k + 1])\) if \(r = n\cdot \mathcal{L}\) (\(k + 1\) being replaced by 1 when \(k = n\cdot \mathcal{L}\)).

Given these ingredients we can now describe the principles the additive transformation relies on. The aim is for \(p_i\) to return \(L_i\) as the value of the set \(\text{trusted}_i\) it provides to the upper layer (remind that this set has to include at most \(z\) processes and eventually at least one correct process). Within the upper wheel component, the processes start from the set \(\mathcal{Y}[1]\) and then scan the same infinite sequence of sets \(\mathcal{Y}[1], \mathcal{Y}[2], \ldots, \mathcal{Y}[n\cdot \mathcal{L}], \mathcal{Y}[1], \ldots\) (tasks T3 and T4). When \(p_i\) is working with \(Y_i\), it looks for one of its subset \(L_i\) (of size \(z\)) containing a correct process (when this occurs, that set defines the value of \(\text{trusted}_i\)). To check if its current set \(L_i\) contains a correct process, \(p_i\) sends \(\text{INQURY}()\) messages and waits until it has received at least one \(\text{RESPONSE}(\text{id})\) message from a process of \(Y_i\) or all the processes of the set \(Y_i\) have crashed (task T3). When a process \(p_j\) sends back a response, it sends the last identity \(\text{repr}_j\) currently computed by its underlying wheel (task T5). Let us consider two cases.
Init: \(Y_i = \mathcal{Y}[1]; L_i = L_i \)

Task T3:
\[\begin{align*}
(01) & \quad \text{while true do} \\
(02) & \quad \quad \text{Broadcast}_i \text{inquiry}(); \\
(03) & \quad \quad \text{wait until } \left(\exists j \in Y_i : \text{a corresponding response} (id_j) \text{ is received from } p_j \right) \\
(04) & \quad \quad \text{let rec from}_i = \{id_j \text{ received previously at line 03}\}; \\
(05) & \quad \quad \text{if } \{\text{rec from}_i \neq \emptyset \} \land \{\text{rec from}_i \cap L_i = \emptyset\} \text{ then} \\
(06) & \quad \quad \quad \quad \quad \text{R}_i \text{Broadcast}_i \text{MOVE}(L_i, Y_i) \text{ end if} \\
(07) & \quad \quad \text{end do} \\
\end{align*}\]

Task T4: when \(\text{L}_\text{MOVE}(L_i, Y_i) \) is \(\text{R}_i \text{delivered} \): \((L_i, Y_i) \leftarrow \text{Next}(L_i, Y_i) \)

Task T5: when \(\text{inquiry}() \) is received from \(p_j \): send \(\text{response} (\text{repr}_j) \) to \(p_j \)

Task T6: when \(\text{trusted}_i \) is read by the upper layer:
\[\begin{align*}
(09) & \quad \text{case } \phi-\text{query}(Y_i) \text{ then return } \min \{j : j \notin Y_i \land \neg \phi-\text{query}(Y_i \cup \{j\})\} \\
(10) & \quad \text{\neg\phi-\text{query}(Y_i) then return } \text{L}_i \text{ end case} \\
\end{align*}\]

Figure 6: From \(\diamond \phi^p + \diamond \mathcal{S}_p \) to \(\Omega^p \): upper wheel component (code for \(p_i \))

- Case A. The first case is when all the processes of \(Y_i \) have crashed (\(\phi-\text{query}(Y_i) \) then eventually returns \(\text{true} \), lines 04 and 09). It follows that the task T3 stops broadcasting \(\text{R}_i\text{Broadcast}_i \text{L}_\text{MOVE}(L_i, Y_i) \) messages. In that case, the value returned for \(\text{trusted}_i \) (line 09) is the smallest identity among the non-crashed processes.

- Case B. The second case is when \(p_i \) receives a response message from a process in \(Y_i \). Then, the set \(\text{rec from}_i \) is empty and contains the identities of the representative \(\text{repr}_j \) of each process \(p_j \) that has answered. We consider two subcases.

 - Case B.1. None of these identities belongs to \(L_i \). \(p_i \) then suspects that all the processes of \(L_i \) have crashed. It consequently broadcasts the message \(\text{R}_i\text{Broadcast}_i \text{L}_\text{MOVE}(L_i, Y_i) \) to entail the progress of all the processes to the next \(L_i \) set.

 - Case B.2. One of these identities belongs to \(L_i \). In that case \(p_i \) considers that its current set \(L_i \) contains one correct process (the one with that identity). It then continuously sending \(\text{inquiry}() \) messages until either none of the identities it receives belongs to \(L_i \) (and then we are in case B.1), or it receives a \(\text{R}_i\text{Broadcast}_i \text{L}_\text{MOVE}(L_i, Y_i) \) message which entails its progress to the next \(L_i \).

Let us notice that, due to the property eventually ensured on the \(\text{repr}_j \) local variables by the lower wheel component, there is a time after which all the \(\text{response}(\text{id}) \) messages carry identities of correct processes. It follows that if the set \(L_i \) currently investigated by the processes does not change, that set includes at least one correct process and we have obtained the property required for \(\text{trusted}_i \).

To capture the intuition that underlies the fact that the two wheels synchronize and the processes stabilize on the same set \(L \), let us first recall that, due to the properties of the lower wheel component, there is a time after which there is a set \(X \) of \(x \) processes such that (1) either all its processes have crashed, or (2) each non-crashed process \(p_j \) of \(X \) is such that \(\text{repr}_j = \ell x \) (the identity of a correct process of \(X \)). In both cases, a process \(p_i \) that does not belong to \(X \) is then such that \(\text{repr}_i = i \).

Let us examine the configuration described in Figure 7. We show that in this configuration a process \(p_i \) cannot entail the progress from \((L_i, Y_i) \) to \(\text{Next}(L_i, Y_i) \). As this is true for any process \(p_i \), it follows that the processes converge to the same final leader set \(L_i \). The configuration occurs when \(Y_i \) contains at least one non-crashed process, \(X \subseteq Y_i \), \(Y_i \cap X = \{\ell x\} \), and \(\ell x \) is the identity of the common representative of the non-crashed processes of \(X \) (or the identity of any of them if they all have crashed). In that configuration, any \(\text{response}(\text{id}) \) message sent by any process \(p_j \in Y_i \) carries an identity that belongs to \(L_i \). It follows that \(\text{rec from}_i \cap L_i \neq \emptyset \) (line 06), and so \(p_i \) does not issue \(\text{R}_i\text{Broadcast}_i \text{L}_\text{MOVE}(L_i, Y_i) \) messages.
4.2.2 Proof of the upper wheel component

The proof is very similar to the proof of the lower wheel algorithm. Its structure is the same, and some of its parts are also the same. This is a direct consequence of the fact that both components are based on the same “wheel” principle. The proof considers an arbitrary run of the algorithm. As before, C denotes the set of processes that are correct in that run, and var_i^τ denotes the value of the local variable var_i of at time τ.

Lemma 7 \(\forall i \in C \), there are a pair \((\Lambda_i, Y_i)\) and a time \(\tau_i\) such that \(\forall \tau \geq \tau_i : (L_i^\tau, Y_i^\tau) = (\Lambda_i, Y_i)\).

Proof We claim (Claim C2) that there is a pair \((L, Y)\) such that the number of $\text{move}(L, Y)$ messages that are sent is finite. Let p_i be a correct process and let us assume (by way of contradiction) that there is no pair \((\Lambda_i, Y_i)\) such that after some time \((L_i, Y_i) = (\Lambda_i, Y_i)\) remains true forever. As the pairs \((L, Y)\) are arranged in a logical ring (as in Figure 4, where $X[\beta]$ is replaced by $Y[\beta']$, $1 \leq \beta' \leq nb_y$ and $\beta \beta$ is replaced by $L_{\alpha, \beta}$, $1 \leq \alpha \leq nb_L$), it follows from the way p_i updates its local pair \((L_i, Y_i)\) that the sequence of the successive values of the local variables \((L_i, Y_i) = (L_i, Y[1]), (L_i, Y[1]), \ldots, (L_{nb_y, Y[nb_y]}), (L_i, Y[1]), \ldots\), etc. Consequently, \((L_i, Y_i)\) takes each values \((L_{\alpha, \beta}, Y[\beta]), 1 \leq \alpha \leq nb_L, 1 \leq \beta \leq nb_y\) infinitely often. In particular, p_i executes \((L_i, Y_i) \leftarrow \text{Next}(L, Y)\) infinitely often. Since this occurs when p_i delivers a $\text{move}(L, Y)$ message, this contradicts the Claim C2 that states that there is a finite number of such messages that are sent. It follows that there is a pair \((\Lambda_i, Y_i)\) and a time \(\tau_i\) such that \(\forall \tau \geq \tau_i : (L_i^\tau, Y_i^\tau) = (\Lambda_i, Y_i)\).

Claim C2: There is a pair \((L, Y)\) such that the number of $\text{move}(L, Y)$ messages that are sent is finite.

Proof of Claim C2 We consider two cases according to the number f of actual process crashes.

- Case 1: $f \geq t - y + 1$. Let Y be a set of $t - y + 1$ processes that are faulty and L be an arbitrary subset of Y of size z. Due to the liveness property of the class $\diamond \varphi^y$, there is a time τ such that any φ^y-query \((Y)\) issued after time τ by any process always returns true. It follows then from lines 06-07 that no message $\text{move}(L, Y)$ can be broadcast after time τ, which implies that the number of these messages is finite.

- Case: $f < t - y + 1$. Let us consider the time τ at which the lower wheel stops turning. More precisely, it exist a time τ, a set $X \subseteq \Pi$, $|X| = x$ and a process identity $\lambda \in X$ (Theorem 5) such that:

 1. $\forall i \in \Pi - X, \forall \tau' \geq \tau : \text{repr}_i^{\tau'} = i$ and,
 2. $X \cap C \neq \emptyset$ $\exists \lambda \in C \cap X$ such that $\forall i \in X, \forall \tau' \geq \tau : \text{repr}_i^{\tau'} = \lambda$ or,

Let Y be a set of $t - y + 1$ processes identities and L a subset of Y of size z defined as follows (see also Figure 7): (1) $X \subseteq Y$, (2) $|X \cap L| = 1$ and (3) if $X \cap C \neq \emptyset$ then, $X \cap L = \{\lambda\}$. Let $i \in Y$ and let us assume that p_i sends a $\text{RESPONSE}(\text{repr}_i)$ after time τ. We show that $\text{repr}_i \in L$. As $L \cup X \subseteq Y$, $|L| + |X| - 1 = |Y|$ and $|L \cap X| = 1$, either $i \in L$ or $i \in X$. If $i \in L$, it follows from the choice of L that $\text{repr}_i = \lambda \in L$. If $i \in X - L$ then, $\text{repr}_i = i \in L$. Consequently, it exists a time $\tau' \geq \tau$ after which any message $\text{RESPONSE}(\text{repr}_i)$ received by any process p_j from a process $p_i, i \in Y$ is such that $\text{repr}_i \in L$.
Moreover, as $f < |Y|$, it follows from the eventual safety property of the class $\Diamond \phi^y$ that there is a time τ'' from which any ϕ-query(Y) returns $false$.

Hence, after time $\tau'' = \max(\tau', \tau')$, a process that is waiting for a response message from some process p_i that belongs to Y always receives such a message and this message carries a process id $\text{repr}_i \in L$. Consequently, it follows from lines 06-07 that after some time τ'', no process can broadcast a $\text{l_MOVE}(L,Y)$ message.

$\square_{\text{Lemma 7}}$

Corollary 2

Eventually all processes stop sending l_MOVE **messages.**

Proof

Let us assume (by contradiction) that it exists a correct process p_i that never stop sending l_MOVE messages. Due to Lemma 7, there is a time τ_i after which (L_i, Y) remains permanently equal to the constant pair (Λ_i, Y_i). Consequently, after time τ_i, p_i keeps on broadcasting $\text{l_MOVE}(\Lambda_i, Y_i)$. It follows then from the validity and termination properties of the reliable broadcast primitive that there is a time $\tau' > \tau_i$ at which p_i executes $(L_i, Y_i) \leftarrow \text{Next}(\Lambda_i, Y_i)$, contradicting Lemma 7. $\square_{\text{Corollary 2}}$

Remark. The fact that there is a time after which no $\text{l_MOVE}(L,Y)$ messages are exchanged, does not imply that the algorithm is quiescent. This is because the correct processes keep on sending forever INQUERY() messages, and answering them by sending back RESPONSE() messages. Differently, the lower wheel component uses only x_MOVE() messages.

Lemma 8 $\forall i, j \in C : (\Lambda_i, Y_i) = (\Lambda_j, Y_j)$. *(In the following, (Λ, Y) denotes that pair.)*

Proof

Due to the properties of the reliable broadcast primitive, p_i and p_j deliver the same multiset of $\text{l_MOVE}(L,Y)$ messages. Moreover, it follows from Corollary 2 that this multiset is finite. Due to the fact that p_i and p_j consume the messages according to the same ring order, and the fact that the common multiset of delivered messages is finite, it follows that $(\Lambda_i, Y_i) = (\Lambda_j, Y_j)$. $\square_{\text{Lemma 8}}$

Theorem 6 The sets trusted, implemented by the algorithm described in Figure 6 satisfy the property defining the class Ω^\ast.

Proof

Due to Lemma 8, there is a time after which all processes have permanently the same pair (Λ, Y). We consider two cases:

- $\forall \in C = \emptyset$. In that case, due to the liveness property of the class $\Diamond \phi^y$, there is a time after which any ϕ-query(\forall) returns $true$. It follows then from line 09 that all the set trusted, are eventually equal and contain only the identity of a correct process (namely, the correct process with the lowest identity that does not belong to \forall).

- $\forall \in C \neq \emptyset$. In that case, any ϕ-query(\forall) eventually always returns false (eventual safety property of the class $\Diamond \phi^y$). It follows then from line 10 that all the sets trusted, are eventually permanently equal to Λ. As $|\Lambda| = z$, it remains to show that $\Lambda \cap C \neq \emptyset$.

Let us assume for contradiction that $\Lambda \cap C = \emptyset$. Let p_i be a correct process. Due to properties ensured by the lower wheel (Theorem 3), there is a time after which any message $\text{RESPONSE}(\text{repr})$ contains the identity of a correct process. From the assumption that Λ contains only faulty processes, it follows that there is a time τ_1 after which p_i cannot receive a response message that carries the identity of a process belonging to Λ. Moreover, since set \forall contains at least one correct process, it follows from line 03-04 and the eventual safety property of the class $\Diamond \phi^y$ that it exist a time τ_2 after which p_i always gets a response(repr_j) message from some process $p_j, j \in \forall$ while waiting at lines 03-04. Finally, there is a time τ after which the predicate $(L_i, Y_i) = (\Lambda, Y)$ is permanently true (Lemma 7). Consequently, there is a time $\tau \geq \max(\tau_1, \tau_2, \tau_i)$ at which the predicate in the if statement of line 06 is not satisfied (i.e., at time τ, we have $\text{recv} _\forall \neq \emptyset \land \text{recv} _\forall \cap \Lambda = \emptyset$). It follows then that p_i broadcasts a $\text{l_MOVE}(\Lambda, Y)$ message. When p_i delivers such a message, it executes $(L_i, Y_i) \leftarrow \text{Next}(\Lambda, Y)$. The fact that this occurs after the time τ_i contradicts Lemma 7.

$\square_{\text{Theorem 6}}$
4.3 A Particular Case

Let us examine the case \(y = 0 \). As already noticed, a failure detector of the class \(\diamond \phi^0 \) provides no information on failures. In that case, the upper wheel algorithm (Figure 6) can be simplified. As the size of a set \(Y_t \) is now \(t + 1 \), \(\text{-query}(Y_t) \) returns always \(\text{false} \). Consequently, the task \(T_6 \) and the line \(04 \) of the task \(T_1 \) can be suppressed, and the value of the set \(\text{trusted}_i \) provided to the upper layer is the current value of the set \(L_i \).

5 Lower Bounds and (Ir)Reducibility Results

This section states first a lower bound related to the addition of failure detector classes (Figure 2). It then proves the (ir)reducibility results stated in the grid depicted in Figure 1.

5.1 A Lower bound when Adding \(\diamond S_x \) and \(\diamond \phi^y \)

This section shows that \((x + y + z > t + 1) \) is a lower bound when one wants to add failure detectors of the class \(\diamond S_x \) and \(\diamond \phi^y \) to build a failure detector of the class \(\Omega^z \).

Theorem 7 Let us consider any system \(AS_{n,t}[\diamond S_x, \diamond \phi^y] \). \((\diamond S_x + \diamond \phi^y \sim \Omega^z) \iff (x + y + z > t + 1) \).

Proof \([\Leftarrow \text{part}] \) This part follows directly from the two wheels algorithm previously described in Sections 4.1.1 and 4.2.1, and proved in sections 4.1.2 and 4.2.2.

\([\Rightarrow \text{part}] \) The proof of this part is by contradiction and considers the stronger system \(AS_{n,t}[S_x, \phi^y] \). As \(S_x \subseteq \diamond S_x \) and \(\phi^y \subseteq \diamond \phi^y \), any impossibility result established in \(AS_{n,t}[S_x, \phi^y] \) holds in \(AS_{n,t}[\diamond S_x, \diamond \phi^y] \).

Let us assume that there is an algorithm \(T \) that builds a failure detector of the class \(\Omega^z \) in \(AS_{n,t}[S_x, \phi^y] \) with \(x + y + z \leq t + 1 \). The contradiction is based on the following observations:

- **Observation O1:** Let \(f \) be the number of actual failures. When \(f \leq t - y \), the only information that a failure detector of the class \(\phi^y \) (or \(\Phi^y \)) can provide is the fact that the number of failures is \(\leq t - y \).

 Proof of O1: Consider a run where \(f \leq t - y \). Let \(E \subseteq \Pi \). Due to the triviality property of \(\phi^y \) (\(\Phi^y \)) any \(\text{-query}(E) \) returns \text{true} (resp., \text{false}) when \(|E| \leq t - y \) (resp., \(|E| > t \)). As \(f \leq t - y \) there is always a correct process in any set \(E \) such that \(t - y < |E| \leq t \). It follows that, due the safety property of \(\phi^y \) (\(\Phi^y \)), any \(\text{-query}(E) \) returns \text{false} when \(t - y < |E| \leq t \). Consequently the boolean value returned by any \(\text{-query}(E) \) depends on the size of \(X \), and does not depend on which processes define \(E \). End of the Proof of O1.

- **Observation O2:** There is no algorithm that solves the \(k \)-set agreement problem in \(AS_{n,t}[S_x] \) when \(t \geq k + x - 1 \).

 Proof of O2: This is a lower bound for solving the \(k \)-set agreement problem in \(AS_{n,t}[S_x] \) established in [11]. End of the Proof of O2.

Let us now consider the transformation \(T \). In any run where \(f \leq t - y \), it follows from O1 that \(T \) can rely on \(\phi^y \) only to know that the number of failures is \(\leq t - y \). This implies that \(T \) can be used to build a failure detector of the class \(\Omega^z \) in \(AS_{n,t-y}[S_x] \). Moreover, it exists and algorithm \(A \) that solves the \(z \)-set agreement problem in \(AS_{n,t-y}[\Omega^z] \) (such an algorithm is described in Section 3). Consequently, by combining transformation \(T \) and algorithm \(A \), one can solve the \(z \)-set agreement problem in \(AS_{n,t-y}[S_x] \). Hence, it follows from O2 that the constraint \(t - y < z + x - 1 \) has to be satisfied, from which we obtain \(x + y + z > t + 1 \): a contradiction.

The following corollary is an immediate consequence of the proof of Theorem 7.

Corollary 3 Let us consider any system \(AS_{n,t}[S_x, \phi^y], AS_{n,t}[\diamond S_x, \phi^y], AS_{n,t}[S_x, \diamond \phi^y] \) or \(AS_{n,t}[S_x, \diamond \phi^y] \). In any of these systems, it exists an algorithm that builds a failure detector of the class \(\Omega^z \) if and only if \((x + y + z) > t + 1 \).

The following corollary follows directly from the proof of the necessity (\(\Rightarrow \)) part of Theorem 7.
Corollary 4 Let us consider any system $\mathcal{AS}_{n,t}[\Diamond S_x, \Phi^y]$. $(\Diamond S_x + \Phi^y \sim \Omega^z) \Rightarrow (x + y + z > t + 1)$.

The following corollary is another consequence of Theorem 7.

Corollary 5 The two wheels algorithm described in Figures 5 and 6 is optimal with respect to the possible values of x, y and z.

As $\Diamond S_1$ (case $x = 1$) provides no information on failures, we directly obtain the following corollary from the two wheel algorithm and Theorem 7.

Corollary 6 It is possible to build a failure detector of the class Ω^y in $\mathcal{AS}_{n,t}[\Diamond \phi^y]$ or $\mathcal{AS}_{n,t}[\Diamond \phi^y]$ if and only if $y + z > t$.

Similarly, as $\Diamond \phi^0$ (case $y = 0$) provides no information on failures, we also have:

Corollary 7 It is possible to build a failure detector of the class Ω^x in $\mathcal{AS}_{n,t}[\Diamond S_x]$ if and only if $x + z > t + 1$.

5.2 Relations between $S_x / \Diamond S_x$ and $\phi^y / \Diamond \phi^y$

Theorem 8 Let $1 \leq x \leq t + 1$ and $1 \leq y \leq t$. It is not possible to build a failure of the classes ϕ^y, $\Diamond \phi^y$ (or Φ^y) neither in $\mathcal{AS}_{n,t}[\Diamond S_x]$ nor in $\mathcal{AS}_{n,t}[S_x]$.

Proof The proof considers the “stronger” system $\mathcal{AS}_{n,t}[S_x]$. As $S_x \subseteq \Diamond S_x$, the proof remains valid for a system $\mathcal{AS}_{n,t}[\Diamond S_x]$. Similarly, as $\Phi^y \subseteq \diamond \phi^y \subseteq \diamond \phi^y$ the proof considers only the “weaker” class $\diamond \phi^y$ in the following. The proof is by contradiction. Let us assume that there is a failure detector F of the class S_x and an algorithm A that transforms F into a failure detector of the class $\diamond \phi^y$. We exhibit a run R in which the eventual safety property of the class $\diamond \phi^y$ is not satisfied.

Let $E \subseteq \Pi$, $|E| = t - y + 1$ and $E \cap C = \emptyset$. Let p_c be a correct process that does not belong to set E. Moreover, p_c is never suspected by F in run R. Let τ_0 be the time at which any ϕ-QUERY(E) invoked after time τ_0 returns the value false. Such a time exists due to the correctness of algorithm A and the eventual safety property of the class $\diamond \phi^y$. We consider the following runs R_1 and R_1' which are possible suffix of run R after time τ_0:

- Runs R_1 and R are indistinguishable by all processes until time τ_0. A time $\tau_0 + 1$, all processes that belong to E crash. Let $\tau_1 > \tau_0$ be a time at which a process $p_i \in \Pi - E$ invokes ϕ-QUERY(E) and obtains the value true. Such a time must exist due to liveness property of the class $\diamond \phi^y$.

- Runs R_1' and R are indistinguishable by all processes until time τ_0. In the run R_1', all the processes in E are correct, but all the messages they send between times $\tau_0 + 1$ and τ_1 are delayed until time $\tau_1 + 1$.

Moreover, both runs are such that the outputs of the failure detector F, at each process, are exactly the same between the times 0 and τ_1. (Let us notice that whatever be the output of F in R_1, the output of F can be exactly the same in R_1' without violating the properties of the class S_x. As p_c is correct in R_1 and R_1' and never suspected in R_1 and R_1', limited scope perpetual accuracy is insured. Since strong completeness is an eventual property, it is always satisfied in any finite prefix of any execution.) Clearly, up to time τ_1, the processes that belong to $\Pi - E$ cannot distinguish the run R_1 from the run R_1'. It follows that, in the run R_1', an invocation of ϕ-QUERY(E) by p_i at time $\tau_1 > \tau_0$ returns the value false. But in run R_1', a ϕ-QUERY(E) issued after time τ_0 must return the value false: a contradiction. \hfill \Leftrightarrow \\text{Theorem 8}

Theorem 9 Let $0 \leq y < t$ and $1 < x \leq t + 1$. It is not possible to build a failure of the class S_x or $\Diamond S_x$ neither in $\mathcal{AS}_{n,t}[\Diamond \phi^y]$ nor in $\mathcal{AS}_{n,t}[\diamond \phi^y]$ (nor in $\mathcal{AS}_{n,t}[\Phi^y]$).

Proof Let us first notice that we need to prove only the impossibility to build a failure of the class $\Diamond S_x$ in $\mathcal{AS}_{n,t}[\phi^y]$. The proof is by contradiction and uses the following observations.

Page 1758
- Observation 01: Let f be the number of actual failures. When \(f \leq t - y \), the only information that a failure detector of the class \(\varphi^y \) (or \(\Phi^y \)) can provide is the fact that the number of failures is \(\leq t - y \). (This observation has already been stated and proved in Theorem 7.)

- Observation 02: There are algorithms that solve the k-set agreement problem in \(\mathcal{A}S_{n,t}[\mathcal{S}_2] \). All these algorithms require \(t \leq k + x - 2 \). (Examples of such algorithms can be found in [11, 19]. The lower bound on t is established in [11].)

- Observation 03: The k-set agreement problem can be solved in \(\mathcal{A}S_{n,t-y}[\emptyset] \) if and only if \(k > t \). (The proof of this observation constitutes an important result of fault-tolerant distributed computing. It can be found in [1, 12, 23].)

Let us suppose that there is an algorithm \(A \) that builds a failure detector of the class \(\diamond \mathcal{S}_x \) from a failure detector of the class \(\varphi^y \) (or \(\Phi^y \)). In any run where \(f \leq t - y \), it follows from 01 that \(A \) can rely on \(\varphi^y \) (or \(\Phi^y \)) only to know that the number of failures is \(\leq t - y \). Consequently, \(A \) can build a failure detector of the class \(\diamond \mathcal{S}_x \) in a system \(\mathcal{A}S_{n,t-y}[\emptyset] \). This means that one can use \(A \) to solve the \((t - y) - x + 2 \)-set agreement problem using any algorithm listed in observation corresponding \(\diamond \mathcal{S}_x \) when \(k \leq t \). Let us remind that the failure detectors of the classes \(\mathcal{S}_1 \) and \(\diamond \mathcal{S}_1 \) provide no information on failures.

5.3 From \(\Omega^x \) to \(\varphi^y / \diamond \varphi^y \) or \(\mathcal{S}_x / \diamond \mathcal{S}_x \)

It has been shown (Corollaries 7 and 6) that it is possible to build a failure detector of the class \(\Omega^x \) from any failure detector of the classes \(\mathcal{S}_x / \diamond \mathcal{S}_x \) (resp., \(\varphi^y / \diamond \varphi^y \)) if and only if \(x + z > t + 1 \) (resp., \(y + z > t \)). This section shows that it is not possible to build a failure detector of the classes \(\mathcal{S}_x / \diamond \mathcal{S}_x \) (resp., \(\varphi^y / \diamond \varphi^y \)) from any failure detector of the class \(\Omega^x \). The proofs of these impossibilities derived from Theorem 9 and 8.

Theorem 10 Let \(1 \leq y \leq t \) and \(1 \leq z \leq t + 1 \). It is impossible to build a failure detector of a class \(\varphi^y / \diamond \varphi^y \) (or \(\Phi^y \)) in \(\mathcal{A}S_{n,t}[\Omega^x] \).

Proof The proof is by contradiction. Let us assume that there is an algorithm \(A \) that builds a failure detector of a class \(\diamond \varphi^y \), \(1 \leq y \leq t \), from any failure detector of a class \(\Omega^x \), \(1 \leq z \leq t + 1 \). Due to Corollary 7, it is possible to build a failure detector of a class \(\Omega^x \) in \(\mathcal{A}S_{n,t}[\diamond \mathcal{S}_x] \) when \(x + z > t + 1 \), i.e., when \(z > t - x + 1 \). Combining this construction with the algorithm \(A \) we obtain an algorithm \(B \) that builds a failure detector of the class \(\varphi^y \), \(1 \leq y \leq t \) from a failure detector of the class \(\diamond \mathcal{S}_x \) when \(t + 1 - z < x \leq t + 1 \) and \(1 \leq z \leq t + 1 \). But such an algorithm \(B \) contradicts Theorem 8 that states that there is no such algorithm when \(1 \leq x \leq t + 1 \) and \(1 \leq y \leq t \). \(\square \)

Theorem 11 Let \(1 < x, z \leq t \). It is impossible to build a failure detector of the class \(\mathcal{S}_x / \diamond \mathcal{S}_x \) in \(\mathcal{A}S_{n,t}[\Omega^x] \).

Proof The proof is similar to the proof of Theorem 10. It is left to the reader. \(\square \)

5.4 Optimality in the Grid

It follows from all the previous theorems and lemmas that, when we consider all the failure detector classes depicted in Figure 1, \(\Omega^x \) is the weakest class that allows solving the k-set agreement problem. This constitutes a first step towards the characterization of the weakest failure detector class for solving that problem. A corresponding \(\Omega^x \)-based k-set agreement protocol has been described in Section 3.

\(^2\) Let us remind that the failure detectors of the classes \(\mathcal{S}_1 \) and \(\diamond \mathcal{S}_1 \) provide no information on failures.
References

A simple construction from Φ^y to Ω^z ($y + z > t$)

Assuming $y + z > t$, the algorithm described in Figure 8 builds a failure detector of the class Ω^z from any failure detector of the class Φ^y. Let us remind that the class Φ^y is ϕ^y with the additional requirement that any two sets X_1 and X_2 used as query parameter must be such that $X_1 \subseteq X_2$ or $X_2 \subseteq X_1$.

The transformation is extremely simple. There is a sequence of $n + z + 2$ sets (initially known by all the processes), defined as follows. Each set contains process identities, and we have: $Y[0] = \emptyset$; $Y[1]$ is an arbitrary set of z distinct process identities; and for any $1 < i \leq n + z + 1$, $Y[i - 1] \subseteq Y[i]$ and $|Y[i - 1]| + 1 = |Y[i]|$. Let us observe that any two sets satisfy the containment property, and $Y[n + z + 1] = \Pi$.

The value of the set $\mbox{trusted}_t$ provide to the upper layer is computed as follows. Using the Φ-$\mbox{QUERY}()$ primitive p_i determines the first set $Y[k]$ in the previous sequence that contains a process that has not crashed. As $z > t - y$, we have $|Y[m]| = z > t - y$ for $m > 0$. This means all the processes included in the previous sets have crashed. The processes p_i returns then the set $Y[k] \setminus Y[k + 1]$.

\begin{verbatim}
when trusted is read by the upper layer:
 let k = \min\{j : \neg \Phi\-query(Y[j])\};
 return(Y[k] \setminus Y[k + 1])
\end{verbatim}

Figure 8: From Φ^y to Ω^z ($y + z > t$)

Theorem 12 There a finite time after which the sets $\mbox{trusted}_t$ of all the correct processes are equal, of size at most z, and contain one correct process.

Proof Let C the set of correct processes, $|C| \geq 1$. Let $m = \min\{j : Y[j] \cap C \neq \emptyset\}$. Let us observe that m exists. This is because $Y[n + z + 1] = \Pi$ and $|C| \geq 1$. If follows that m is such that $Y[m]$ is the first set of the sequence $Y[0], \ldots, Y[n + z + 1]$ that contains the identity of a correct process. Let us observe that $m > 0$ since $Y[0] = \emptyset$. From the properties defining the class Φ we have:
- As $Y[0] = \emptyset$, Φ-$\mbox{QUERY}(Y[0])$ returns always true (triviality property of Φ).
- There is a time after which all the invocations of Φ-$\mbox{QUERY}(A)$ where A is $Y[a]$ with any $a < m$ returns true (liveness property of Φ).
- All the invocations Φ-$\mbox{QUERY}(Y[m])$ returns false (safety property of Φ).

It follows that there is a time after which all the correct processes output $Y[m] \setminus Y[m - 1]$, which proves the theorem. (If one process of $Y[1]$ is correct, they output $Y[1]$ of size z; otherwise they output a single process identity.) \hfill \Box

B A simple addition $\diamond S_x + \diamond \phi^y \leadsto \diamond S_y$ ($x + y > t$)

This section presents a simple algorithm that adds the power of ϕ^y and the power of S_x (resp., $\diamond S_y$ and $\diamond S_x$) to provide a failure detector of the class $\diamond S_y$ (resp., $\diamond S_x$). (Let us remind that $S_y = S$ and $\diamond S_y = \diamond S$.) The algorithm is described in Figure 9. As the failure detector classes $\Omega^y = \Omega$ and $\diamond S_y = \diamond S$ are equivalent.
is a single writer//multi reader atomic variable/. The by

reasons/: on one side it would make the protocol much more involved, on another side this is not necessary to prove our goal/.

they have the same computational power as far as failures are concerned) [2, 5, 17], it follows from Theorem

7 that the algorithm requires \(x + y > t \) (which becomes a necessary and sufficient requirement for such a transformation).

To show the versatility of the approach, the algorithm is expressed in the shared memory model. It can be easily translated in the message-passing model without adding any requirement on \(t \). Each process \(p_i \) has the following local variables:

- \(\text{suspected}_i \) is a local variable that \(p_i \) can only read. It contains the set of processes provided to \(p_i \) by its underlying failure detector module of the class \(S_x \) (resp., \(\Diamond S_x \)). These sets satisfy the properties defining the class \(S_x \) (resp., \(\Diamond S_x \)): they eventually includes all crashed processes and \(x \) of these sets do not include the same correct process from the very beginning in the case of \(S_x \) (or after some unknown but finite time in the case of \(\Diamond S_x \)).

- \(\text{SUSPECTED}_i \) is the local set of processes built by the algorithm. The sets \(\text{SUSPECTED}_i \) of all the processes have to satisfy the properties defining \(S \) (resp., \(\Diamond S \)). Initially, \(\text{SUSPECTED}_i = \emptyset \).

- \(\text{new}_i \) and \(\text{prev}_i \) are two auxiliary variables. Each is an array of size \(n \) initialized to the zero vector.

The shared memory is made up of two arrays denoted \(\text{alive}[1 : n] \) and \(\text{suspect}[1 : n] \). Each of their entries is a single writer/multi reader atomic variable. The \(\text{alive}[i] \) and \(\text{suspect}[i] \) variables are repeatedly updated by \(p_i \) until it (possibly) crashes (see task \(T1 \) in Figure 9). Their meaning is the following:

- \(\text{alive}[i] \) is only increased by \(p_i \) to indicate it has not crashed. This means that, after a process \(p_i \) crashes, the value of \(\text{alive}[i] \) does not change\(^3\).

- \(\text{suspect}[i] \) is used by \(p_i \) to inform the other processes about the value of its local \(\text{suspected}_i \) set.

The task \(T2 \) of a process \(p_i \) repeats forever a set of statements whose aim is to compute the current value of the local set \(\text{SUSPECTED}_i \) (line 07) whose value is used by the upper layer protocol. To carry out this computation, \(p_i \) first reads the shared array \(\text{alive}[1 : n] \) to know which processes have progressed (the reading of the whole array is not atomic). It reads this array until it knows that all the processes that have not progressed have crashed (lines 02-05). Then, trusting the processes it considers as not crashed (the set \(\text{alive} \)), it updates its local set \(\text{SUSPECTED}_i \) according to the current suspicions made public by these processes.

![Figure 9](https://via.placeholder.com/150)

\begin{verbatim}
task T1: repeat forever
(01) \quad \text{alive}[i] \leftarrow \text{alive}[i] + 1; \text{suspect}[i] \leftarrow \text{suspected}_i
end repeat

task T2: repeat forever
(02) \quad \text{new}_i \leftarrow [\text{read}(\text{alive}[1]), \ldots, \text{read}(\text{alive}[n])];
(03) \quad \text{let } \text{live} = \{ j \mid \text{new}_i[j] > \text{prev}_i[j] \};
(04) \quad \text{let } X = \{1, \ldots, n\} \setminus \text{live};
(05) \quad \text{until } \phi_{\text{QUERY}}[X];
(06) \quad \text{prev}_i \leftarrow \text{new}_i;
(07) \quad \text{SUSPECTED}_i \leftarrow \bigcap_{j \in \text{live}} \text{suspect}[j] \setminus \text{live}
end repeat
\end{verbatim}

Figure 9: From \(\phi^u + S_x \) to \(S \) (resp., \(\Diamond \phi^u + \Diamond S_x \) to \(\Diamond S \)), (algorithm for \(p_i \))

Theorem 13 Let \(x + y > t \). If the underlying failure detector belongs to the class \(S_x \) (resp., \(\Diamond S_x \)), the sets \(\text{SUSPECTED}_i \) built by the \(\phi^u \)-based (resp., \(\Diamond \phi^u \)-based) algorithm described in Figure 9 define a failure detector of the class \(S \) (resp., \(\Diamond S \)).

\(^3\) It is possible to have a bounded implementation for each shared variable \(\text{alive}[i] \). We do not elaborate on this for two reasons: on one side it would make the protocol much more involved, on another side this is not necessary to prove our goal.

Pll n· 1758
Proof Let us first show that the inner loop always terminates. Proving this termination is required to claim that the variable SUSPECTED_i is updated at line 07. We consider three cases according to the size of the set parameter X when p_i invokes QUERY(X) at line 05.

- |X| > t. In that case, due to the triviality property, the query returns false, and p_i enters again the loop. But, as there are at most t faulty processes, each correct process p_j infinitely often increases alive[j] (task T1), and previ[j] remains constant within the inner loop, there is a time after which every query issued by p_i is such that |X| ≤ t. We are then in one of the cases that follow.

- |X| ≤ t − y. In that case, due to the triviality property, the query returns true and p_i exits the inner loop.

- t − y < |X| ≤ t. If the query returns false, p_i enters again the loop. We show that the query eventually returns true. Let us consider a process p_j that belongs to S (this means that alive[j] = previ[j] at line 03 of the task T2 executed by p_i). If p_j is correct, there is eventually an inner loop such that alive[j] > previ[j] because p_j increases forever alive[j] and previ[j] remains constant within the inner loop. This means that eventually such a p_j will disappear from the set X defining the query parameter. It follows that, eventually, the set X used as a query parameter (1) contains only faulty processes or (2) has a size smaller than or equal to t − y. Due to the liveness (case 1) or triviality (case 2) property, there is then a query that eventually returns true.

Let us now show that, if the sets suspected_i satisfy the strong completeness property, this property is also satisfied by the sets SUSPECTED_i. If a process p_k crashes, due to the strong completeness of the sets suspected_i, it eventually belongs to the set suspected_i of each non-crashed process p_j. Due to line 01, after some finite time, p_k is always in suspect_j (until p_j possibly crashes). Moreover, as after some time p_k no longer increases alive[k], there is a finite time after which it never belongs to the live set computed by any process. Due to line 07, it eventually belongs to (and remains permanently in) the set SUSPECTED_i of any non-crashed process p_i.

The last part of the proof concerns the weak accuracy property. We formulate the proof for going from the class S_x to the classes S. (The proof for going from the class S_x and 0 to the class S is similar, and is consequently omitted.) So, we have to show that, if x + y > t and the sets suspected_i satisfy the limited scope perpetual weak accuracy property (namely, there is a correct process, say p_k, that is not suspected by at least x - correct or faulty - processes), then the sets SUSPECTED_i satisfy perpetual weak accuracy (there is a correct process - namely, p_k again in our transformation - that is no suspected by any process). We consider two cases, according to the size of the set X when a process p_i exits the inner loop.

- |X| ≤ t − y.

 In that case, the exit of the inner loop was due to the triviality property. As t − y < x, we have |X| < x, which (due the limited scope perpetual weak accuracy) means that at least one process p_k of the set live of p_i is such that p_k never belongs to suspected_k, and consequently p_i never belongs to suspect[k]. It then follows that p_i can never belong to the intersection computed at line 07, which proves the case.

- t − y < |X| ≤ t.

 In that case, due to the safety property, all the processes in X have crashed. We examine two subcases.

 - t − y < |X| < x. The proof of this case (|X| < x) is the same as the previous one.

 - t − y < x ≤ |X|. In that case, it is possible that all the processes that do not suspect p_i have crashed, and all the remaining processes p_j do suspect p_i (i.e., p_i ∈ suspected_j). But in that case (noticing that X and live define a partition of the whole set of processes), a process that is not in the live set of p_i has necessarily crashed (safety and non-triviality properties). So, p_i necessarily belongs to the set live of p_i. It follows from line 07 that p_i cannot belong to SUSPECTED_i, which proves the case.

\[\square\text{\textit{Theorem 13}}\]

Irisa