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An Improved Fabrication Technique 
for the 3-D Frequency Selective 
Surface based on Water Transfer 
Printing Technology
Maxime Harnois1*, Mohamed Himdi1, Wai Yan Yong   2, Sharul Kamal Abdul Rahim3, 
Karim Tekkouk4 & Nicolas Cheval4

Manufacturing an array of high-quality metallic pattern layers on a dielectric substrate remains a major 
challenge in the development of flexible and 3-D frequency selective surfaces (FSS). This paper proposes 
an improved fabrication solution for the 3-D FSS based on water transfer printing (WTP) technology. 
The main advantages of the proposed solution are its ability to transform complicated 2-D planar FSS 
patterns into 3-D structures while improving both manufacturing quality and production costs. WTP 
technology makes use of water surface tension to keep the thin metallic patterns of the proposed 
FSS floating flat with the absence of a solid planar substrate. This feature enables these metallic FSS 
patterns to be transferred onto 3-D structures through a dipping process. To test the effectiveness of the 
proposed technique, the FSS was designed using computer simulation software Microwave Studio to 
obtain the numerical performance of the FSS structure. The WTP technology was then used to fabricate 
the proposed FSS prototype before its performance was tested experimentally. The measurement 
results agreed well with the numerical results, indicating the proposed manufacturing solution would 
support the development of complicated 3-D electronics devices, such as conformal antenna arrays and 
metamaterials.

A frequency selective surface (FSS) is a periodic array structure designed using either radiating or non-radiating 
elements1. The FSS can be function as either a band-pass or band-stop filter. FSSs are widely used as radomes 
which function as spatial filters shielding unwanted electromagnetic signals2. FSSs are also commonly used in 
radar systems for radar cross-section reduction3. To ease the integration of FSS with other devices and struc-
tures while extending FSS applicability, FSS with flexible characteristics are required4. To date, several studies 
have investigated the manufacturing techniques for flexible electronic components5–8. Despite this, most of these 
technologies remain focused on the fabrication of small-scale electronic devices. To improve the marketability 
of these electronic components, more research works is needed to create a low-cost, high-quality technique for 
fabricating flexible, large-scale and 3-D electronics devices.

To this end, numerous investigations in the field of conformable electronics have focused on the fabrication 
solutions in realizing the flexible and stretchable electronic components9–14. Previous research has established 
that these flexible and stretchable electronics can be realized by replacing the planar rigid substrate with the 
conformable substrate such as Polyethylene Naphthalate (PEN), Polyimide (PI), or a stretchable rubber known 
as Polydimethylsiloxane (PDMS)9,10. In the design of the flexible electronic components, previous research works 
have proven that substrate thickness plays a crucial role in determining the conformability behaviour of flexible 
electronics12. Indeed, when a thinner substrate is used, electronic devices can conform to another structure more 
easily13,15. Salvatore et al.15 demonstrated the possibility of developing a flexible electronic device with extraordi-
nary bending performance using a micrometre-thick polymeric substrate, but their proposed solution remains 
controversial given industry demands for large-scale manufacturing. Although the proposed solution in15 would 
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resolved the integration issue of highly flexible electronic devices, the manipulation of an ultra-thin substrate 
remains challenging, especially in the field of large-area electronics.

Another interesting solution allowing the integration of electronic components with 3-D structures is devel-
oping electronics components with the stretchable features. Unlike flexible electronics components, stretchable 
electronics may be bent or expanded in-plane. Such electronics can be fabricated using stretchable interconnects 
(e.g. buckled or serpentine design)16, liquid metal17 and intrinsically stretchable materials16,18,19. Several electron-
ics, such as implantable neuro monitors and stimulators20, optoelectronic devices21 and conformal photovoltaic 
devices22, have been fabricated utilizing these technologies, but the fabrication of large-scale electronic devices, 
such as FSSs, remains impractical due to the time consuming in the fabrication which also results in high fabri-
cation cost. To address the large-scale manufacturing issue for 3-D devices, alternative solutions, such as aerosol 
jetting23, direct printing24 and 3-D moulded interconnected devices25,26, have been proposed. While these pro-
posals offer solid support for large-scale manufacturing of the metallic and insulator layers of electronic devices26, 
they remain immature and unable to fabricate complex electronics and electronic components that would serve 
actual industrial applications26.

Recently, a novel water transfer printing (WTP) technology was introduced for the fabrication of small-scale 
electronic devices14,27–30. WTP, also known as hydrographic printing, is also commonly used in graphic art31. 
WTP allows the transfer of 2-D planar designs onto 3-D surfaces of any shape. In addition, the fabrication of 
flexible electronic devices using WTP can be realized easily using water-soluble substrate and water14, removing 
the need for expensive facilities, such as custom made 3-D moulds and thermoforming machine.

In this paper, we propose to evaluate WTP compatibility by fabricating the array structure of FSS devices using 
a proposed WTP technology. To demonstrate the advantages of the proposed technology, we shall provide a com-
parative study between WTP and established thermoforming fabrication technology. The design of a FSS element, 
fabrication set-up, fabrication process and FSS characterization results will be presented. The proposed WTP is 
expected to be an attractive solution for the manufacturing of large-scale 3-D electronic devices and a potential 
manufacturing candidate for the fabrication of the 5G massive MIMO (Multiple-Input Multiple-Output) antenna 
arrays.

Results
FSS design.  FSSs are periodically-arranged conductive patterns fabricated on an insulator surface to provide 
band-pass or band-stop characteristics4. An FSS is commonly used as a radome or for radar cross-section reduc-
tion1. FSSs are usually installed on structures with varying designs, such as buildings or aircraft bodies. FSS per-
formance is highly dependent on how its metal is deposited on the insulator surface2, making the dimensions of 
that metallic layer a key performance parameter. Therefore, a low-cost manufacturing technique with consistent 
and high-resolution performance is desirable for the FSS fabrication.

In this work, a single-band convoluted ring loop (CRL) FSS, illustrated in Fig. 1, was designed to provide fil-
tering characteristics at X-band performance. The assigned FSS unit cell size was 7.2 × 7.2 mm.

The proposed CRL pattern is convoluted from the ring loop element by introducing a square slot at each of the 
90° point of the conventional ring loop element4. By doing so, the overall dimension of the unit cell was reduced 
by 33%. With more compact dimensions, more FSS unit cells can be accommodated over the limited space struc-
ture to produce a stable frequency response performance2.

Fabrication of the 3-D FSS.  We demonstrated two types of fabrication techniques on the manufacturing of 
the 3-D FSS prototype: thermoforming and WTP technology.

Thermoforming fabrication technology.  Multiple studies have confirmed that thermoforming technology per-
forms well during the fabrication of large-area interconnected circuitry26. The thermoforming process develops 
the 3-D shape of proposed components, using patterns fabricated on a planar substrate. The thermoforming 
process is also applied on the planar circuit afterward to give it the desired 3-D shape.

Figure 1.  The proposed FSS unit cell design of the CRL; d = 7.2 mm, l = 1.2 mm, h = 1.6 mm and w = 0.5 mm.
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 Figure 2 illustrates the fabrication process of a 3-D FSS, based on the thermoforming technique. As indicated 
in Fig. 2(a), two additive manufacturing techniques (drop-on-demand inkjet printing and screen printing) are 
first employed to fabricate the FSS pattern onto a 2-D planar polyethylene terephthalate (PET) substrate. The 
PET substrate employed in our experiment was around 0.127 mm thick which can be used easily for bending. 
The metallic thickness of the FSS pattern was around 12 μm and 3 μm for screen and inkjet printing, respectively. 
The 3-D profilometry scan and optical images of the conductive layer prior to the fabrication of the thermo-
forming process are illustrated in Fig. 2(a,c) with the red inserts representing inkjet printing and the blue inserts 
identifying screen printing. As can be observed from these figures, both of these techniques provided reasonable 
fabrication quality for the metallic layer.

These planar FSS structures were then sandwiched in between two parts of the 3-D aluminium mould, as 
shown in Fig. 2(b), and bonded to the 3-D object, as illustrated in Fig. 2(d). Figure 3(a,b) show how an alumi-
num fold with a waveform shape was employed. The diameter of the waves was fixed at 8mm. To ensure the FSS 
was patterned onto the expected wave-shaped 3-D structure, the FSS patterns were aligned with the mould. The 
centre of each FSS unit cell sub-patterns corresponded to the highest location along the z-axis of the wave. By 
utilizing both mechanical pressing and thermoforming processes, these planar FSS were formed into the 3-D 
shape shown in Fig. 3(c). Figure 3(e) shows the thermoformed FSS bonded to the 3-D wave-shaped object while 
Fig. 2(c) exemplifies the 3-D FSS prototype after the thermoforming process based on the aluminium mould. 
The optical images of the metallic surface condition for these prototypes are shown in Fig. 2(c) as well with the 
metallic layers of the FSS fabricated using the inkjet printing technique experiencing some cracking after the 
thermoforming process. This phenomenon has dramatic effects on FSS shielding performance. As such, only the 
prototype fabricated using the screen printing technique was processed further by attaching it to an object made 
of epoxy foam coated with a gel-coated layer (see Methods: PVA processing for further details). Fig. 2(e) depicts 
the final prototype results.

Water transfer printing technology.  The WTP process began with the fabrication of functional films on polyvinyl 
alcohol (PVA). As only the screen printing technique proved viable during the thermoforming process, it was the 
only technique used prior to the WTP process. Figure 4 illustrates the 3-D FSS fabrication process utilizing the 
proposed WTP technology. The PVA substrate with the FSS metallic pattern was first gently deposited on water, 
as illustrated in Fig. 4(b,c). The PVA substrate was then dissolved in the water, allowing the planar metal patterns 
to float upon the liquid. The intended 3-D structural recipient of the FSS pattern was subsequently dipped slowly 
into the liquid through the floating pattern, such that when the object contacted the FSS pattern, as demonstrated 
in Fig. 4(d), the patterns of the FSS will be transferred onto the intended 3-D shaped. In the dipping process, the 

Figure 2.  3-D illustration of the fabrication of a 3-D FSS, based on thermoforming process. (a) Conductive 
metallic FSS patterns arranged in an array are patterned onto a polyetheylene terephthalate (PET) substrate 
based on additive manufacturing techniques (screen printing and inkjet printing); (b) sandwiching the 2-D 
planar FSS between two parts of the mould; (c) thermoformed FSS and the optical image of the conductive 
layer of the FSS after being thermoformed via inkjet and screen printing fabrication techniques; and (d) 
thermoformed FSS bonded onto a 3-D structure.
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liquid applies a resistance to the dip which allowed the pattern to conform to the 3-D structural surface. When the 
3-D object was fully immersed, the whole planar pattern was then transferred onto it before it was gently shaken 
in the liquid and finally extracted as shown in Fig. 4(e). Figures 4(f) and 5 illustrate the final 3-D FSS prototype 
manufactured utilizing the proposed WTP technology.

The FSS metallic patterns are clearly visible in Fig. 5(c), aligned along the wave shape. To ensure the accuracy 
of the pattern deposition, a 4-axes motorised positioning equipment, assisted by a camera, was used in the fabri-
cation process (fabrication process was recorded and provided as the Supplemented File).

Discussion
Measurement results.  To evaluate the performance of the fabricated 3-D FSS prototype, we characterized 
the prototype experimentally. Figure. 6(a,b) illustrate the comparison of the simulated and measured transmission 
response for the 3-D conformal FSS prototype fabricated utilizing the thermoformed technique and the WTP tech-
nology, respectively, at normal angles of incidence for transverse electric (TE) and transverse magnetic (TM) modes.

Figure 3.  Optical image showing the main thermoforming process. (a) Top and bottom part of an 
aluminium mould; (b) the 2-D planar substrate placed on the bottom of the mould; (c) the substrates after the 
thermoforming step; (d) the wavy FSS patterns and (e) the thermoformed substrate placed on top of the 3-D 
object. The blue and red insets show higher resolutions of the patterns for screen printing and drop-on-demand 
printing, respectively.

Figure 4.  Fabrication of the FSS using WTP technology: (a) FSS patterns fabricated onto the 2-D planar PVA 
substrate; (b) depositing the substrate gently onto the water’s surface; (c) the substrate floating on the water, 
allowing the hydrosoluble substrate to dissolve; (d) dipping the object through the floating patterns; (e) shaking 
and withdrawing the object; and (f) the final object conformally wrapped with the electronics.
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As can be observed from Fig. 6(a), the simulation results show that resonance frequency occurs at 10.4 GHz 
and 9.4 GHz for TE and TM polarizations, respectively. The FSS prototype fabricated via thermoforming pro-
duced resonance frequencies of 10.5 GHz and 9.5 GHz for TE and TM polarization, respectively. These frequency 
shifts are insignificant, proving that this technique provides highly accurate manufacturing dimensions with a 
prototype more selective than its simulation. This effect could be due to a shape mismatch between the prototype 
and its simulation or from inaccuracies caused by the meshing stage of the simulation, especially at the junction 
of two waves.

A similar phenomenon occurred with the prototype fabricated through WTP technology. Although the FSS 
unit cell dimensions were identical for both prototypes, their simulation results differed, as illustrated in Fig. 6. 
This phenomenon is mainly attributed to the property differences of the dielectric substrate used in these two 
technologies, which had a significant impact on the FSS performance. The relationship between the dielectric 
substrate material and FSS performances has already been discussed by many published works and will be not 
detailed in this work. In Figure 6(b), the measurement and the simulation results show that the WTP-crafted 
prototype shielding at 9 GHz and 9.7 GHz, for TE and TM polarization, respectively, with a narrow transmission 
bandwidth, demonstrating results comparable to the numeric model. Thus, the proposed WTP technology is an 
alternative manufacturing solution for large-scale 3-D FSS devices.

Figure 5.  Optical images of the 3-D structure before and after the WTP process for the fabrication of the 
FSS prototype: (a) 45° oriented view, (b) 90° oriented view, (c) side view showing the top of the wave-shaped 
structure. The blue inset shows a higher resolution of the sub-patterns of the fabricated 3-D FSS.

Figure 6.  FSS measurements: (a) FSS prototype developed onto PET using thermoforming prior to 
transferring onto a wave-shaped object made of Rohacell; and (b) FSS FSS patterns fabricated onto PVA prior to 
transferring, via WTP, onto a wave-shaped.

https://doi.org/10.1038/s41598-020-58657-5


6Scientific Reports |         (2020) 10:1714  | https://doi.org/10.1038/s41598-020-58657-5

www.nature.com/scientificreportswww.nature.com/scientificreports/

Comparing thermoforming and WTP.  The main difference between the fabricating technologies relies is 
the thermoforming process requiring the use of a planar deformable plastic substrate while the WTP process per-
mitted the metallic layer to be deposited directly onto a 3-D structure without the need for a substrate. In terms of 
conformability, both technologies managed to provide a comparable bending ability when the curvatures of the 
3-D structure were along a single axis, as illustrated in Figs. 3 and 5. Due to the dielectric characteristic playing a 
significant role in determining FSS performance, the WTP process provided a simpler numeric modelling of the 
FSS devices. In the FSS modelling, the numeric model only requires take a single layer of the dielectric character-
istics of the 3-D structure with FSS elements upon it into consideration. Regarding thermoforming, the dielectric 
effect from both the 2-D planar substrate and the 3-D structure require consideration during the numeric mod-
elling of the FSS devices. To highlight the advantage of the WTP fabrication over the thermoforming process, we 
fabricated some additional 3-D FSS prototypes on more complex 3-D structures.

Two objects (one donut-shaped and one semi-spherical) were used to fabricate the FSS elements as 
proof-of-concept prototypes, as shown in Figure 7. As can be observed from Fig. 7(b,d), the themoforming tech-
nology was unable to transfer the FSS onto either object (wrinkles and folds were inevitable when wrapping 
flexible sheets onto 3-D surfaces with two nonzero principal curvatures). As such, the PET-based FSS could only 
cover the tops of these objects. By contrast, the WTP technology transferred the FSS pattern directly onto both 
structures, as illustrated in Fig. 7(c,e). Despite this pattern transference onto complex 3-D structures, the pattern 
distortions can be observed. This phenomenon is exacerbated by the surface of the object when dipped perpen-
dicularly into the liquid, which has been reported in other works dealing with graphic arts31,32. This effect is due 
to the Stokes flow that occurs during the dipping. Methods to resolve it have already been proposed and can be 
borrowed from the field of conformable electronics32.

An FSS was fabricated using the proposed WTP technology on the semi-spherical object because this shape is 
commonly employed in the design of an antenna radome. The FSS fabricated onto the semi-spherical object was 
not, however, sufficiently optimised through the simulation. The experimental characterization was performed 
to demonstrate the band-stop filter ability of such an FSS. As denoted in Fig. 7(f), the fabricated FSS using the 
proposed WTP technology provided shielding from 8.1–9.1 GHz. Since the FSS performance was not optimized 
numerically, the measured performance of the FSS prototype was unstable over the operating frequency band-
width. This is because the FSS performance on the semi-spherical object was unlike the conventional planar FSS, 
where its performance will be affected by the reflective index of the FSS is varied when it is curved. For a planar 
FSS, electromagnetic waves travelling through or being reflected would form a planar wavefront. For a curved 
FSS, a spherical wavefront would be formed as a result of its interaction with the impinging electromagnetic wave, 
resulting in a change of the reflective index of the FSS. Several bending angles will be evaluated in the future to 

Figure 7.  Optical images of the fabricated 3-D FSS on the complex structures: (a) a donut-shaped object 
without FSS deposition; (b) a donut-shaped object covered with FSS fabricated onto a PET substrate; (c) 
a donut-shaped object with FSS elements deposited through the proposed WTP technology; (d) a semi-
spherical object shaped with a PET-based FSS placed on top of it; (e) a semi-spherical object shaped with FSS 
elements deposited through WTP technology; and (f) a demonstrated FSS prototype fabricated based on WTP 
technology onto semi-spherical structure made of PEEK.
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observe how they affect the performance of a curved FSS. Regarding practical design, the FSS performance of the 
semi-spherical object requires optimisation prior to fabrication. A comparison of a semi-spherical FSS fabricated 
via thermoforming was not possible during this study due to fabrication solution limitations.

In this paper, we present the WTP technology as an alternative fabrication solution for 3-D conforming FSS. The 
conductive fabrication patterns on large-area 3-D structures have been compared between thermoforming and WTP 
processes. The measurement results have shown significant degradation in the transmission bandwidth, which might 
be linked to improper FSS design. For the first time, an FSS structure has been being manufactured utilizing WTP 
technology to form a 3-D curved FSS. Experimentation also demonstrated that it is possible to fabricate an FSS over 
complex 3-D structures using two proof-of-concept structures (a donut-shaped object and a semi-spherical object) as 
prototypes. The insights gained from this study may be of assistance to the future fabrication of large-array elements, 
such as FSS and massive MIMO antennas. This work has also revealed several questions that require further investiga-
tion, including the evaluation of possible causes for transmission bandwidth decreases and which resolutions can be 
supported via WTP technology during the manufacture of compact high-speed communication devices.

Methods
Characterization of the FSS prototype.  Top-view images and videos were obtained using a PENTAX K70D 
camera equipped with a ZOOM macro 50 mm (Pentax). Optical microscope images were obtained using a Leica 
microscope equipped with a digital camera. Transmission responses from the FSS prototypes were carried out in an 
anechoic chamber. The measurement setup was comprised of two horn antennas (transmitting and receiving antennas) 
connected to a Rode & Schwarz Vector Network Analyzer with coaxial cables. The FSS prototypes were placed equi-
distant between the antennas, which were 60cm away from one another, to comply with far-field region conditions4.

PVA processing.  The photoresist was first deposited on a glass slide as a sacrificed layer to release the PVA sub-
strate at the end of the fabrication process. A PVA solution (PVA; Mw 9,000–10,000, 80% hydrolyzed from Aldrich) 
was then prepared by mixing DI water and PVA powder (5: 1 w/w water/PVA) and filtering it through a 0.4 μm filter. 
The PVA was spin-coated on the photoresist to form a 50 μm-thick layer and baked at 100 °C for two hours. The 
spin-coating was performed at low rotation velocity of 20 rpm and an acceleration 10 rpm∕s −1 for uniform thickness. 
Metallic thin films were subsequently deposited onto the PVA layer. The PVA substrate was finally delaminated from 
the glass slide by applying acetone to dissolve the photoresist. The described processing is appropriate for small-area 
electronics. For large-area fabrication that requires inkjet printing, for instance, the commercial product of PVA lami-
nated on PET films (Aicello, SOLUBLON - 30 μm-thick PVA on 75 μm-thick PET) performs better.

Characterization of PET. 

•	 The PET substrate (AgIC, Japan) was characterized using an open-ended coaxial probe with a vector network 
analyzer up to 13 GHz.

•	 Thin film patterning: WTP technology requires that the devices must be processed on a water-soluble sub-
strate. Many approaches to solve this issue have already been proposed14.

•	 In this study, the inkjet printing of silver nanoparticles of AgIC #1000 (AgIC, Japan) was performed using a 
Brother MFC-J430 printer.

•	 Jetting and drying behaviour of the ink was defined to respect criteria described in previous work33– 35.
•	 Experiments dealing with screen printing were performed at SERIBASE Industrie (Chateau-Gontier, France).

3-D wave shaped object fabrication.  Aluminium moulds were coated with at least 4 layers of commercial 
wax. Approximately 1mm thick gel-coating (Sicomin, France) was used as top coated layer. Epoxy foam (Sicomin, 
France) was applied (1cm thick) and baked at 50 °C overnight.

3-Dipping and transfer steps.  PVA film was placed on the water’s surface and dissolved before objects 
were dipped through the floating pattern into the water. Objects were subsequently withdrawn and dried. Van 
Der Waals force allowed the pattern to stick to each 3-D object.
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